Skip to main content

Reverse Two-Hybrid Techniques in the Yeast Saccharomyces cerevisiae

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1278))

Abstract

Use of the yeast two-hybrid system has provided definition to many previously uncharacterized pathways through the identification and characterization of novel protein-protein interactions. The two-hybrid system uses the bifunctional nature of transcription factors, such as the yeast enhancer Gal4, to allow protein-protein interactions to be monitored through changes in transcription of reporter genes. Once a positive interaction has been identified, either of the interacting proteins can be mutated by site-specific or randomly introduced changes, to produce proteins with a decreased ability to interact. Mutants generated using this strategy are very powerful reagents in tests of the biological significance of the interaction and in defining the residues involved in the interaction. Such techniques are termed reverse two-hybrid methods. We describe a reverse two-hybrid method that generates loss-of-interaction mutations of the catalytic subunit of the Escherichia coli heat-labile toxin (LTA1) with decreased binding to the active (GTP-bound) form of human ARF3, its protein cofactor. While newer methods are emerging for performing interaction screens in mammalian cells, instead of yeast, the use of reverse two-hybrid in yeast remains a robust and powerful means of identifying loss-of-interaction point mutants and compensating changes that remain among the most powerful tools of testing the biological significance of a protein-protein interaction.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246

    Article  CAS  PubMed  Google Scholar 

  2. Chien CT, Bartel PL, Sternglanz R et al (1991) The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci U S A 88:9578–9582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Boman AL, Zhang C, Zhu X et al (2000) A family of ADP-ribosylation factor effectors that can alter membrane transport through the trans-Golgi. Mol Biol Cell 11:1241–1255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Van Valkenburgh H, Shern JF, Sharer JD et al (2001) ADP-ribosylation factors (ARFs) and ARF-like 1 (ARL1) have both specific and shared effectors: characterizing ARL1-binding proteins. J Biol Chem 276:22826–22837

    Article  PubMed  Google Scholar 

  5. Ito T, Chiba T, Ozawa R et al (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98:4569–4574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Ito T, Tashiro K, Muta S et al (2000) Toward a protein-protein interaction map of the budding yeast: a comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc Natl Acad Sci U S A 97:1143–1147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Uetz P (2002) Two-hybrid arrays. Curr Opin Chem Biol 6:57–62

    Article  CAS  PubMed  Google Scholar 

  8. Uetz P, Giot L, Cagney G et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae [see comments]. Nature 403:623–627

    Article  CAS  PubMed  Google Scholar 

  9. Maier RH, Maier CJ, Hintner H et al (2012) Quantitative real-time PCR as a sensitive protein-protein interaction quantification method and a partial solution for non-accessible autoactivator and false-negative molecule analysis in the yeast two-hybrid system. Methods 58:376–384

    Article  CAS  PubMed  Google Scholar 

  10. Pellet J, Meyniel L, Vidalain PO et al (2009) pISTil: a pipeline for yeast two-hybrid Interaction Sequence Tags identification and analysis. BMC Res Notes 2:220

    Article  PubMed Central  PubMed  Google Scholar 

  11. Rajagopala SV, Uetz P (2009) Analysis of protein-protein interactions using array-based yeast two-hybrid screens. Methods Mol Biol 548:223–245

    Article  CAS  PubMed  Google Scholar 

  12. Ratushny V, Golemis E (2008) Resolving the network of cell signaling pathways using the evolving yeast two-hybrid system. Biotechniques 44:655–662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Cagney G, Uetz P (2001) High-throughput screening for protein-protein interactions using yeast two-hybrid arrays. Curr Protoc Protein Sci Chapter 19:Unit 19 16.

    Google Scholar 

  14. Parrish JR, Gulyas KD, Finley RL Jr (2006) Yeast two-hybrid contributions to interactome mapping. Curr Opin Biotechnol 17:387–393

    Article  CAS  PubMed  Google Scholar 

  15. Vidalain PO, Boxem M, Ge H et al (2004) Increasing specificity in high-throughput yeast two-hybrid experiments. Methods 32:363–370

    Article  CAS  PubMed  Google Scholar 

  16. Legrain P, Selig L (2000) Genome-wide protein interaction maps using two-hybrid systems. FEBS Lett 480:32–36

    Article  CAS  PubMed  Google Scholar 

  17. Walhout AJ, Boulton SJ, Vidal M (2000) Yeast two-hybrid systems and protein interaction mapping projects for yeast and worm. Yeast 17:88–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Chappell TG, Gray PN (2008) Protein interactions: analysis using allele libraries. Adv Biochem Eng Biotechnol 110:47–66

    CAS  PubMed  Google Scholar 

  19. Endoh H, Vincent S, Jacob Y et al (2002) Integrated version of reverse two-hybrid system for the postproteomic era. Methods Enzymol 350:525–545

    Article  CAS  PubMed  Google Scholar 

  20. Endoh H, Walhout AJ, Vidal M (2000) A green fluorescent protein-based reverse two-hybrid system: application to the characterization of large numbers of potential protein-protein interactions. Methods Enzymol 328:74–88

    Article  CAS  PubMed  Google Scholar 

  21. Vidal M, Endoh H (1999) Prospects for drug screening using the reverse two-hybrid system. Trends Biotechnol 17:374–381

    Article  CAS  PubMed  Google Scholar 

  22. Zhu X, Kahn RA (2001) The Escherichia coli heat labile toxin binds to Golgi membranes and alters Golgi and cell morphologies using ADP-ribosylation factor-dependent processes. J Biol Chem 276:25014–25021

    Article  CAS  PubMed  Google Scholar 

  23. Zhu X, Kim E, Boman AL et al (2001) ARF binds the C-terminal region of the Escherichia coli heat-labile toxin (LTA1) and competes for the binding of LTA2. Biochemistry 40:4560–4568

    Article  CAS  PubMed  Google Scholar 

  24. Das S, Kalpana GV (2009) Reverse two-hybrid screening to analyze protein-protein interaction of HIV-1 viral and cellular proteins. Methods Mol Biol 485:271–293

    Article  CAS  PubMed  Google Scholar 

  25. Cadwell RC, Joyce GF (1992) Randomization of genes by PCR mutagenesis. PCR Methods Appl 2:28–33

    Article  CAS  PubMed  Google Scholar 

  26. Leanna CA, Hannink M (1996) The reverse two-hybrid system: a genetic scheme for selection against specific protein/protein interactions. Nucleic Acids Res 24:3341–3347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Puthalakath H, Strasser A, Huang DC (2001) Rapid selection against truncation mutants in yeast reverse two-hybrid screens. Biotechniques 30:984–988

    CAS  PubMed  Google Scholar 

  28. Vidal M, Brachmann RK, Fattaey A et al (1996) Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proc Natl Acad Sci U S A 93:10315–10320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Durfee T, Becherer K, Chen PL et al (1993) The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev 7:555–569

    Article  CAS  PubMed  Google Scholar 

  30. Boman AL, Kuai J, Zhu X et al (1999) Arf proteins bind to mitotic kinesin-like protein 1 (MKLP1) in a GTP-dependent fashion. Cell Motil Cytoskeleton 44:119–132

    Article  CAS  PubMed  Google Scholar 

  31. Kuai J, Kahn RA (2000) Residues forming a hydrophobic pocket in ARF3 are determinants of GDP dissociation and effector interactions. FEBS Lett 487:252–256

    Article  CAS  PubMed  Google Scholar 

  32. Muhlrad D, Hunter R, Parker R (1992) A rapid method for localized mutagenesis of yeast genes. Yeast 8:79–82

    Article  CAS  PubMed  Google Scholar 

  33. Bai C, Elledge SJ (1996) Gene identification using the yeast two-hybrid system. Methods Enzymol 273:331–347

    Article  CAS  PubMed  Google Scholar 

  34. Rose MD, Winston F, Hieter P (1990) In: Rose MD, Winston F, Hieter P (eds) Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  35. Horvath A, Riezman H (1994) Rapid protein extraction from Saccharomyces cerevisiae. Yeast 10:1305–1310

    Article  CAS  PubMed  Google Scholar 

  36. Bartel P, Chien CT, Sternglanz R et al (1993) Elimination of false positives that arise in using the two-hybrid system. Biotechniques 14:920–924

    CAS  PubMed  Google Scholar 

  37. James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Brent R, Finley RL Jr (1997) Understanding gene and allele function with two-hybrid methods. Annu Rev Genet 31:663–704

    Article  CAS  PubMed  Google Scholar 

  39. Vidal M, Legrain P (1999) Yeast forward and reverse ‘n’-hybrid systems. Nucleic Acids Res 27:919–929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Shafikhani S, Siegel RA, Ferrari E et al (1997) Generation of large libraries of random mutants in Bacillus subtilis by PCR-based plasmid multimerization. Biotechniques 23:304–310

    CAS  PubMed  Google Scholar 

  41. Guarente L (1983) Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol 101:181–191

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Kahn Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bennett, M.A., Shern, J.F., Kahn, R.A. (2015). Reverse Two-Hybrid Techniques in the Yeast Saccharomyces cerevisiae . In: Meyerkord, C., Fu, H. (eds) Protein-Protein Interactions. Methods in Molecular Biology, vol 1278. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2425-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2425-7_28

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2424-0

  • Online ISBN: 978-1-4939-2425-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics