Skip to main content

De Novo Secondary Structure Motif Discovery Using RNAProfile

  • Protocol
  • First Online:
RNA Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1269))

Abstract

RNA secondary structure plays critical roles in several biological processes. For example, many trans-acting noncoding RNA genes and cis-acting RNA regulatory elements present functional motifs, conserved both in structure and sequence, that can be hardly detected by primary sequence analysis alone. We describe here how conserved secondary structure motifs shared by functionally related RNA sequences can be detected through the software tool RNAProfile. RNAProfile takes as input a set of unaligned RNA sequences expected to share a common motif, and outputs the regions that are most conserved throughout the sequences, according to a similarity measure that takes into account both the sequence of the regions and the secondary structure they can form according to base-pairing and thermodynamic rules.

The method is split into two parts. First, it identifies candidate regions within the input sequences, and associates with each region a locally optimal secondary structure. Then, it compares candidate regions to one another, both at sequence and structure level, and builds motifs exploring the search space through a greedy heuristic. We provide a detailed guide to the different parameters that can be employed, and usage examples showing the different software capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sabin LR, Delás MJ, Hannon GJ (2013) Dogma derailed: the many influences of RNA on the genome. Mol Cell 49(5):783–794

    Article  CAS  PubMed  Google Scholar 

  2. Dieterich C, Stadler PF (2012) Computational biology of RNA interactions. Wiley Interdiscip Rev RNA 4(1):107–120

    Article  PubMed  Google Scholar 

  3. Pavesi G, Mauri G, Stefani M et al (2004) RNAProfile: an algorithm for finding conserved secondary structure motifs in unaligned RNA sequences. Nucleic Acids Res 32(10):3258–3269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Rabani M, Kertesz M, Segal E (2008) Computational prediction of RNA structural motifs involved in posttranscriptional regulatory processes. Proc Natl Acad Sci U S A 105(39):14885–14890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hiller M, Pudimat R, Busch A et al (2006) Using RNA secondary structures to guide sequence motif finding towards single-stranded regions. Nucleic Acids Res 34(17):e117

    Article  PubMed Central  PubMed  Google Scholar 

  6. Bafna V, Tang H, Zhang S (2006) Consensus folding of unaligned RNA sequences revisited. J Comput Biol 13(2):283–295

    Article  CAS  PubMed  Google Scholar 

  7. Mokrejs M, Vopálenský V, Kolenaty O et al (2006) IRESite: the database of experimentally verified IRES structures (www.iresite.org). Nucleic Acids Res 34(Database issue):D125–D130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Burge SW, Daub J, Eberhardt R et al (2013) Rfam 11.0: 10 years of RNA families. Nucleic Acids Res 41(Database issue):D226–D232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Grillo G, Turi A, Licciulli F et al (2010) UTRdb and UTRsite (RELEASE 2010): a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 38(Database issue):D75–D80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11:129

    Article  PubMed Central  PubMed  Google Scholar 

  11. Lorenz R, Bernhart SH, Höner Zu Siederdissen C et al (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6:26

    Article  PubMed Central  PubMed  Google Scholar 

  12. Witwer C, Hofacker IL, Stadler PF (2004) Prediction of consensus RNA secondary structures including pseudoknots. IEEE/ACM Trans Comput Biol Bioinformatics 1(2):66–77

    Article  CAS  Google Scholar 

  13. Mignone F, Gissi C, Liuni S et al (2002) Untranslated regions of mRNAs. Genome Biol 3(3):REVIEWS0004

    Article  PubMed Central  PubMed  Google Scholar 

  14. Waterman MS (1995) Introduction to computational biology. Chapman & Hall, London

    Book  Google Scholar 

  15. Hentze MW, Muckenthaler MU, Galy B et al (2010) Two to tango: regulation of mammalian iron metabolism. Cell 142(1):24–38

    Article  CAS  PubMed  Google Scholar 

  16. Tandara L, Salamunic I (2012) Iron metabolism: current facts and future directions. Biochem Med 22(3):311–328

    Article  CAS  Google Scholar 

  17. Ma J, Haldar S, Khan MA et al (2012) Fe2+ binds iron responsive element-RNA, selectively changing protein-binding affinities and regulating mRNA repression and activation. Proc Natl Acad Sci U S A 109(22):8417–8422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Cahill CM, Lahiri DK, Huang X et al (2009) Amyloid precursor protein and alpha synuclein translation, implications for iron and inflammation in neurodegenerative diseases. Biochim Biophys Acta 1790(7):615–628

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Huang TS, Melefors O, Lind MI et al (1999) An atypical iron-responsive element (IRE) within crayfish ferritin mRNA and an iron regulatory protein 1 (IRP1)-like protein from crayfish hepatopancreas. Insect Biochem Mol Biol 29(1):1–9

    Article  CAS  PubMed  Google Scholar 

  20. Lehmann R, Nüsslein-Volhard C (1991) The maternal gene nanos has a central role in posterior pattern formation of the Drosophila embryo. Development 112(3):679–691

    CAS  PubMed  Google Scholar 

  21. Crucs S, Chatterjee S, Gavis ER (2000) Overlapping but distinct RNA elements control repression and activation of nanos translation. Mol Cell 5(3):457–467

    Article  CAS  PubMed  Google Scholar 

  22. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Byun Y, Han K (2009) PseudoViewer3: generating planar drawings of large-scale RNA structures with pseudoknots. Bioinformatics 25(11):1435–1437

    Article  CAS  PubMed  Google Scholar 

  24. Wiese KC, Glen E, Vasudevan A (2005) JViz.Rna—a Java tool for RNA secondary structure visualization. IEEE Trans Nanobioscience 4(3):212–218

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Pavesi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zambelli, F., Pavesi, G. (2015). De Novo Secondary Structure Motif Discovery Using RNAProfile. In: Picardi, E. (eds) RNA Bioinformatics. Methods in Molecular Biology, vol 1269. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2291-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2291-8_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2290-1

  • Online ISBN: 978-1-4939-2291-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics