Skip to main content

Innate Immunity in Disease: Insights from Mathematical Modeling and Analysis

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 844))

Abstract

The acute inflammatory response is a complex defense mechanism that has evolved to respond rapidly to injury, infection, and other disruptions in homeostasis. This robust responsiveness to biological stress likely endows the host with increased fitness, but over-robust or inadequate inflammation predisposes the host to various diseases. Importantly, well-compartmentalized inflammation is generally beneficial, but spillover of inflammation into the blood is a hallmark—and likely also a driver—of self-maintaining inflammation. The blood is also a key entry point and immunological interface for vectors of parasitic diseases, diseases that themselves incite systemic inflammation. The complex role of inflammation in health and disease has made this biological system difficult to understand comprehensively and modulate rationally for therapeutic purposes. Consequently, systems approaches have been applied in order to characterize dynamical properties and identify key control points in inflammation. This process begins with the collection of high-dimensional, experimental, and clinical data, followed by data reduction and data-driven modeling that finally informs mechanistic computational models for analysis, prediction, and rational modulation. These studies have suggested that the overall architecture of the inflammatory response includes a multiscale positive feedback from inflammation → tissue damage → inflammation, which is often inadequately controlled by negative feedback from anti-inflammatory mediators. Given the importance of the blood interface for the inflammatory response, and the accessibility of this compartment both as an immunological sampling reservoir for vectors as well as for diagnosis and therapy, we suggest that any rational efforts at modulating inflammation via the blood compartment must involve computational modeling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABM:

Agent-based model

AsNOS:

Anopheles stephensi nitric oxide synthase

DAMP:

Damage-associated molecular pattern molecule

DBN:

Dynamic Bayesian Networks

GMM:

Genetically modified mosquito

MODS:

Multiple organ dysfunction syndrome

ODE:

Ordinary differential equations

PCA:

Principal component analysis

RBM:

Rule-based model

sTNFR:

Soluble tumor necrosis factor-α receptor

TNF-α:

Tumor necrosis factor-α

References

  1. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428–35.

    Article  CAS  PubMed  Google Scholar 

  2. Brown KL, Cosseau C, Gardy JL, Hancock REW. Complexities of targeting innate immunity to treat infection. Trends Immunol. 2007;28(6):260–6.

    Article  CAS  PubMed  Google Scholar 

  3. Marshall JC. Inflammation, coagulopathy, and the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med. 2001;29(7 Suppl):S99–S106.

    Article  CAS  PubMed  Google Scholar 

  4. Jarrar D, Chaudry IH, Wang P. Organ dysfunction following hemorrhage and sepsis: mechanisms and therapeutic approaches (Review). Int J Mol Med. 1999;4(6):575–83.

    CAS  PubMed  Google Scholar 

  5. Waxman K. Shock: ischemia, reperfusion, and inflammation. New Horiz. 1996;4(2):153–60.

    CAS  PubMed  Google Scholar 

  6. Peitzman AB, Billiar TR, Harbrecht BG, Kelly E, Udekwu AO, Simmons RL. Hemorrhagic shock. Curr Probl Surg. 1995;32(11):925–1002.

    Article  CAS  PubMed  Google Scholar 

  7. Namas R, Ghuma A, Torres A, Polanco P, Gomez H, Barclay D, et al. An adequately robust early TNF-a response is a hallmark of survival following trauma/hemorrhage. PLoS ONE. 2009;4(12):e8406.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Nathan C. Points of control in inflammation. Nature. 2002;420(6917):846–52.

    Article  CAS  PubMed  Google Scholar 

  9. Vodovotz Y, Csete M, Bartels J, Chang S, An G. Translational systems biology of inflammation. PLoS Comput Biol. 2008;4:1–6.

    Article  Google Scholar 

  10. Mi Q, Constantine G, Ziraldo C, Solovyev A, Torres A, Namas R, et al. A dynamic view of trauma/hemorrhage-induced inflammation in mice: principal drivers and networks. PLoS ONE. 2011;6:e19424.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Namas R, Zamora R, Namas R, An G, Doyle J, Dick TE, et al. Sepsis: something old, something new, and a systems view. J Crit Care. 2012;27(3):314e1–11.

    Article  Google Scholar 

  12. Chow CC, Clermont G, Kumar R, Lagoa C, Tawadrous Z, Gallo D, et al. The acute inflammatory response in diverse shock states. Shock. 2005;24:74–84.

    Article  CAS  PubMed  Google Scholar 

  13. Lagoa CE, Bartels J, Baratt A, Tseng G, Clermont G, Fink MP, et al. The role of initial trauma in the host’s response to injury and hemorrhage: insights from a comparison of mathematical simulations and hepatic transcriptomic analysis. Shock. 2006;26:592–600.

    Article  CAS  PubMed  Google Scholar 

  14. Reynolds A, Rubin J, Clermont G, Day J, Vodovotz Y, Ermentrout BG. A reduced mathematical model of the acute inflammatory response: I. Derivation of model and analysis of anti-inflammation. J Theor Biol. 2006;242(1):220–36.

    Article  CAS  PubMed  Google Scholar 

  15. Torres A, Bentley T, Bartels J, Sarkar J, Barclay D, Namas R, et al. Mathematical modeling of post-hemorrhage inflammation in mice: studies using a novel, computer-controlled, closed-loop hemorrhage apparatus. Shock. 2008;32(2):172–8.

    Article  Google Scholar 

  16. Vodovotz Y, An G. Systems biology and inflammation. In: Yan Q, editor. Systems biology in drug discovery and development: methods and protocols. Totowa:Springer; 2009. 181–201.

    Google Scholar 

  17. Mi Q, Li NYK, Ziraldo C, Ghuma A, Mikheev M, Squires R, et al. Translational systems biology of inflammation: potential applications to personalized medicine. Personal Med. 2010;7:549–59.

    Article  Google Scholar 

  18. Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10(12):826–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Parker SJ, Watkins PE. Experimental models of gram-negative sepsis. Br J Surg. 2001;88(1):22–30.

    Article  CAS  PubMed  Google Scholar 

  20. Bellingan G. Inflammatory cell activation in sepsis. Br Med Bull. 1999;55(1):12–29.

    Article  CAS  PubMed  Google Scholar 

  21. Jones AL, Selby P. Tumour necrosis factor: clinical relevance. Cancer Surv. 1989;8(4):817–36.

    CAS  PubMed  Google Scholar 

  22. Cavaillon JM. Cytokines and macrophages. Biomed Pharmacother. 1994;48(10):445–53.

    Article  CAS  PubMed  Google Scholar 

  23. Kox WJ, Volk T, Kox SN, Volk HD. Immunomodulatory therapies in sepsis. Intensive Care Med. 2000;26 (Suppl 1):S124–8.

    Article  PubMed  Google Scholar 

  24. Dinarello CA. Proinflammatory cytokines. Chest. 2000;118(2):503–8.

    Article  CAS  PubMed  Google Scholar 

  25. Pinsky MR. Sepsis: a pro- and anti-inflammatory disequilibrium syndrome. Contrib Nephrol. 2001;(132):354–66.

    Google Scholar 

  26. Baugh JA, Bucala R. Mechanisms for modulating TNF alpha in immune and inflammatory disease. Curr Opin Drug Discov Dev. 2001;4(5):635–50.

    CAS  Google Scholar 

  27. Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science. 2002;296(5573):1634–5.

    Article  CAS  PubMed  Google Scholar 

  28. An G, Nieman G, Vodovotz Y. Computational and systems biology in trauma and sepsis: current state and future perspectives. Int J Burns Trauma. 2012;2:1–10.

    PubMed Central  PubMed  Google Scholar 

  29. Csete ME, Doyle JC. Reverse engineering of biological complexity. Science. 2002;295(5560):1664–9.

    Article  CAS  PubMed  Google Scholar 

  30. Mideo N, Day T, Read AF. Modelling malaria pathogenesis. Cell Microbiol. 2008;10(10):1947–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Vodovotz Y, Constantine G, Rubin J, Csete M, Voit EO, An G. Mechanistic simulations of inflammation: current state and future prospects. Math Biosci. 2009;217(1):1–10.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Mesarovic MD, Sreenath SN, Keene JD. Search for organising principles: understanding in systems biology. Syst Biol (Stevenage). 2004;1(1):19–27.

    Article  CAS  Google Scholar 

  33. Janes KA, Yaffe MB. Data-driven modelling of signal-transduction networks. Nat Rev Mol Cell Biol. 2006;7(11):820–8.

    Article  CAS  PubMed  Google Scholar 

  34. Kitano H. Systems biology: a brief overview. Science. 2002;295(5560):1662–4.

    Article  CAS  PubMed  Google Scholar 

  35. Arkin A, Schaffer D. Network news: innovations in 21st century systems biology. Cell. 2011;144(6):844–9.

    Article  CAS  PubMed  Google Scholar 

  36. Mac Nally R. Regression and model-building in conservation biology, biogeography and ecology: the distinction between-and reconciliation of-“predictive” and “explanatory” models. Biodivers Conserv. 2000;9(5):655–71.

    Article  Google Scholar 

  37. Janes KA, Gaudet S, Albeck JG, Nielsen UB, Lauffenburger DA, Sorger PK. The response of human epithelial cells to TNF involves an inducible autocrine cascade. Cell. 2006;124(6):1225–39.

    Article  CAS  PubMed  Google Scholar 

  38. Vodovotz Y, Constantine G, Faeder J, Mi Q, Rubin J, Bartels J, et al. Translational systems approaches to the biology of inflammation and healing. Immunopharmacol Immunotoxicol. 2010;32(2):181–95.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Angeli D, Ferrell JE, Sontag ED. Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc Natl Acad Sci U S A. 2004;101(7):1822–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Clermont G, Chow CC, Kumar R, Vodovotz Y. Mathematical simulation of the innate immune response. Crit Care Med. 2001;29(12Suppl):A111.

    Google Scholar 

  41. Bagci EZ, Vodovotz Y, Billiar TR, Ermentrout GB, Bahar I. Bistability in apoptosis: roles of Bax, Bcl−2, and mitochondrial permeability transition pores. Biophys J. 2006;90(5):1546–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Day J, Rubin J, Vodovotz Y, Chow CC, Reynolds A, Clermont G. A reduced mathematical model of the acute inflammatory response II. Capturing scenarios of repeated endotoxin administration. J Theor Biol. 2006;242(1):237–56.

    Article  CAS  PubMed  Google Scholar 

  43. Marino S, Hogue IB, Ray CJ, Kirschner DE. A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol. 2008;254(1):178–96.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Kurata H, El-Samad H, Iwasaki R, Ohtake H, Doyle JC, Grigorova I, et al. Module-based analysis of robustness tradeoffs in the heat shock response system. PLoS Comput Biol. 2006;2(7):e59.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Wilensky U. NetLogo. Center for connected learning and computer-based modeling, Northwestern University. Evanston, IL. 1999. http://ccl.northwestern.edu/netlogo/.

  46. Solovyev A, Mikheev M, Zhou L, Dutta-Moscato J, Ziraldo C, An G, et al. SPARK: a framework for multi-scale agent-based biomedical modeling. Int J Agent Technol Syst. 2010;2:18–30.

    Article  PubMed  Google Scholar 

  47. An G, Hunt CA, Clermont G, Neugebauer E, Vodovotz Y. Challenges and rewards on the road to translational systems biology in acute illness: four case reports from interdisciplinary teams. J Crit Care. 2007;22:169–75.

    Article  PubMed Central  PubMed  Google Scholar 

  48. An G, Faeder J, Vodovotz Y. Translational systems biology: introduction of an engineering approach to the pathophysiology of the burn patient. J Burn Care Res. 2008;29:277–85.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Kauvar DS, Wade CE. The epidemiology and modern management of traumatic hemorrhage: US and international perspectives. Crit Care. 2005;9 Suppl 5:S1–S9.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Kauvar DS, Lefering R, Wade CE. Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations. J Trauma. 2006;60(6 Suppl):S3–11.

    Article  PubMed  Google Scholar 

  51. Prince JM, Levy RM, Bartels J, Baratt A, Kane JM III, Lagoa C, et al. In silico and in vivo approach to elucidate the inflammatory complexity of CD14-deficient mice. Mol Med. 2006;12(4–6):88–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Kumar R, Chow CC, Bartels JD, Clermont G, Vodovotz Y. A mathematical simulation of the inflammatory response to anthrax infection. Shock. 2008;29(1):104–11.

    PubMed Central  PubMed  Google Scholar 

  53. Torres A, Bentley T, Bartels J, Sarkar J, Barclay D, Namas R, et al. Mathematical modeling of posthemorrhage inflammation in mice: studies using a novel, computer-controlled, closed-loop hemorrhage apparatus. Shock. 2009;32(2):172–8.

    Article  PubMed  Google Scholar 

  54. Constantine G, Buliga M, Vodovotz Y, Bohnen N, Clermont G. Time varying patterns of organ failure. Int J Contemp Math Sci. 2010;5:2263–72.

    Google Scholar 

  55. Kumar R, Clermont G, Vodovotz Y, Chow CC. The dynamics of acute inflammation. J Theor Biol. 2004;230:145–55.

    Article  CAS  PubMed  Google Scholar 

  56. Arciero J, Rubin J, Upperman J, Vodovotz Y, Ermentrout GB. Using a mathematical model to analyze the role of probiotics and inflammation in necrotizing enterocolitis. PLoS ONE. 2010;5:e10066.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Vodovotz Y, Chow C, Bartels J, Lagoa C, Kumar R, Day J, Rubin J, Ermentrout B, Riviere B, Yotov I, Constantine G, Billiar T, Fink M, Clermont G. Mathematical simulations of sepsis and trauma. Proceedings of the 11th Congress of the European Shock Society. 2005.

    Google Scholar 

  58. Vodovotz Y, Chow CC, Bartels J, Lagoa C, Prince J, Levy R, et al. In silico models of acute inflammation in animals. Shock. 2006;26:235–44.

    Article  CAS  PubMed  Google Scholar 

  59. Ruder WC, Lu T, Collins JJ. Synthetic biology moving into the clinic. Science. 2011;333(6047):1248–52.

    Article  CAS  PubMed  Google Scholar 

  60. Arkin A, Fletcher D. Fast, cheap and somewhat in control. Genome Biol. 2006;7(8):114.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Karlsson M, Weber W, Fussenegger M. Design and construction of synthetic gene networks in mammalian cells. In: Weber W, Fussenegger M, editors. Synthetic gene networks, vol. 813. Humana Press (New York, NY).; 2012. pp. 359–76.

    Google Scholar 

  62. Weber W, Fussenegger M. Emerging biomedical applications of synthetic biology. Nat Rev Genet. 2012;13(1):21–35.

    CAS  Google Scholar 

  63. Fernandez-Botran R, Sun X, Crespo FA. Soluble cytokine receptors in biological therapy. Expert Opin Biol Ther. 2002;2(6):585–605.

    Article  CAS  PubMed  Google Scholar 

  64. Larrick JW, Wright SC. Native cytokine antagonists. Baillieres Clin Haematol. 1992;5(3):681–702.

    Article  CAS  PubMed  Google Scholar 

  65. Namas R, Mikheev M, Yin J, Over P, Young M, Constantine G, et al. Biohybrid device for the systemic control of acute inflammation. Disrupt Sci Technol. 2012;1(1).

    Google Scholar 

  66. Akman-Anderson L, Vodovotz Y, Zamora R, Luckhart S. Bloodfeeding as an Interface of mammalian and arthropod immunity. In: Beckage N, edtior. Insect Immunology. San Diego: Elsevier; 2007. pp. 149–177.

    Google Scholar 

  67. Gooding LR. Virus proteins that counteract host immune defenses. Cell. 1992;71(1):5–7.

    Article  CAS  PubMed  Google Scholar 

  68. Surachetpong W, Singh N, Cheung KW, Luckhart SMAPK. ERK signaling regulates the TGF-β1-dependent mosquito response to Plasmodium falciparum. PLoS Pathog. 2009;5(4):e1000366.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Surachetpong W, Pakpour N, Cheung KW, Luckhart S. Reactive oxygen species-dependent cell signaling regulates the mosquito immune response to Plasmodium falciparum. Antioxid Redox Signal. 2011;14(6):943–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Omer FM, Kurtzhals JAL, Riley EM. Maintaining the immunological balance in parasitic infections: a role for TGF-β. Parasitol Today. 2000;16(1):18–23.

    Article  CAS  PubMed  Google Scholar 

  71. Luckhart S, Lieber MJ, Singh N, Zamora R, Vodovotz Y. Low levels of mammalian TGF-β1 are protective against malaria parasite infection, a paradox clarified in the mosquito host. Exp Parasitol. 2008;118:290–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Luckhart S, Vodovotz Y, Cui L, Rosenberg R. The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc Natl Acad Sci U S A. 1998;95:5700–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Crampton AL, Luckhart S. Isolation and characterization of As60 A, a transforming growth factor- β gene, from the malaria vector Anopheles stephensi. Cytokine. 2001;13(2):65–74.

    Article  CAS  PubMed  Google Scholar 

  74. Price I, Ermentrout B, Zamora R, Wang B, Azhar N, Mi Q, et al. In vivo, in vitro, and in silico studies suggest a conserved immune module that regulates malaria parasite transmission from mammals to mosquitoes. J Theor Biol. 2013;334:172–86.

    Article  Google Scholar 

  75. Date SV, Stoeckert CJ. Computational modeling of the Plasmodium falciparum interactome reveals protein function on a genome-wide scale. Genome Res. 2006;16(4):542–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. LaCount DJ, Vignali M, Chettier R, Phansalkar A, Bell R, Hesselberth JR, et al. A protein interaction network of the malaria parasite Plasmodium falciparum. Nature. 2005;438(7064):103–7.

    Article  CAS  PubMed  Google Scholar 

  77. Hu G, Cabrera A, Kono M, Mok S, Chaal BK, Haase S, et al. Transcriptional profiling of growth perturbations of the human malaria parasite Plasmodium falciparum. Nat Biotech. 2010;28(1):91–8.

    Article  CAS  Google Scholar 

  78. Osta MA, Christophides GK, Vlachou D, Kafatos FC. Innate immunity in the malaria vector Anopheles gambiae: comparative and functional genomics. J Exp Biol. 2004;207(15):2551–63.

    Article  CAS  PubMed  Google Scholar 

  79. Zdobnov EM, von Mering C, Letunic I, Torrents D, Suyama M, Copley RR, et al. Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science. 2002;298(5591):149–59.

    Article  CAS  PubMed  Google Scholar 

  80. Winzeler EA. Applied systems biology and malaria. Nat Rev Micro. 2006;4(2):145–51.

    Article  CAS  Google Scholar 

  81. Osta MA, Christophides GK, Kafatos FC. Effects of mosquito genes on Plasmodium development. Science. 2004;303(5666):2030–2.

    Article  CAS  PubMed  Google Scholar 

  82. Corby-Harris V, Drexler A, Watkins de Jong L, Antonova Y, Pakpour N, Ziegler R, et al. Activation of Akt signaling reduces the prevalence and intensity of malaria parasite infection and lifespan in Anopheles stephensi mosquitoes. PLoS Pathog. 2010;6(7):e1001003.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Dong Y, Das S, Cirimotich C, Souza-Neto JA, McLean KJ, Dimopoulos G. Engineered Anopheles immunity to Plasmodium infection. PLoS Pathog. 2011;7(12):e1002458.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Institutes of Health grants R01GM67240, P50GM53789, R33HL089082, R01HL080926, R01AI080799, R01HL76157, R01DC008290, and UO1 DK072146; National Institute on Disability and Rehabilitation Research grant H133E070024; a Shared University Research Award from IBM, Inc.; and grants from the Commonwealth of Pennsylvania, the Pittsburgh Life Sciences Greenhouse, and the Pittsburgh Tissue Engineering Initiative/Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoram Vodovotz PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Azhar, N., Vodovotz, Y. (2014). Innate Immunity in Disease: Insights from Mathematical Modeling and Analysis. In: Corey, S., Kimmel, M., Leonard, J. (eds) A Systems Biology Approach to Blood. Advances in Experimental Medicine and Biology, vol 844. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2095-2_11

Download citation

Publish with us

Policies and ethics