Skip to main content

RTKs in Invertebrates: Lessons in Signal Transduction

  • Chapter
  • First Online:
Receptor Tyrosine Kinases: Structure, Functions and Role in Human Disease
  • 1888 Accesses

Abstract

Receptor tyrosine kinases were first isolated from the Drosophila genome in 1985 (Livneh et al. Cell 40(3):599–607, 1985; Wadsworth et al. Nature 314(6007):178–80, 1985), shortly after the isolation of the vertebrate receptors. Following the initial structural studies of these receptors, additional components in their signaling pathways were identified. Genetic epistasis studies have aided further in determining the linear order of signaling components within the pathway. Importantly, in genetically tractable organisms like Drosophila and C. elegans, the different roles of each receptor during development were deciphered.

This chapter focuses on the insights obtained by studying RTKs in invertebrate organisms. One important observation is that RTK pathways guiding developmental decisions appear to be linear, rather than branched. A second observation is that there is no temporal overlap between distinct RTK pathways within the same cells. Since the activation of MAPK represents a common node to all RTK cascades, it was possible to examine this notion directly. Antibodies that specifically recognize the active, double phosphorylated form of MAPK allow to trace immunohistochemically the dynamic pattern of activation by all RTKs (Gabay et al. Development 124(18):3535–41, 1997). Each aspect of this pattern could be completely removed in a genetic background that specifically eliminates signaling by only one RTK pathway. This implies that the activation of MAPK per se does not provide information on the identity of the activated receptor, and it is the time and tissue context of MAPK activation that defines the target genes that will be induced. The time and place of the activation of each RTK pathway are tightly regulated by the expression of the respective ligands or ligand-processing components. The range of activation is defined by the level of ligand that is secreted and by negative feedback circuits that restrict the range of pathway stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Livneh E, Glazer L, Segal D, Schlessinger J, Shilo BZ. The Drosophila EGF receptor gene homolog: conservation of both hormone binding and kinase domains. Cell. 1985;40(3):599–607. PubMed PMID: 2982499.

    Article  CAS  PubMed  Google Scholar 

  2. Wadsworth SC, Vincent 3rd WS, Bilodeau-Wentworth D. A Drosophila genomic sequence with homology to human epidermal growth factor receptor. Nature. 1985;314(6007):178–80. PubMed PMID: 2983232.

    Article  CAS  PubMed  Google Scholar 

  3. Beiman M, Shilo BZ, Volk T. Heartless, a Drosophila FGF receptor homolog, is essential for cell migration and establishment of several mesodermal lineages. Genes Dev. 1996;10(23):2993–3002. PubMed PMID: 8957000.

    Article  CAS  PubMed  Google Scholar 

  4. Gisselbrecht S, Skeath JB, Doe CQ, Michelson AM. Heartless encodes a fibroblast growth factor receptor (DFR1/DFGF-R2) involved in the directional migration of early mesodermal cells in the Drosophila embryo. Genes Dev. 1996;10(23):3003–17. PubMed PMID: 8957001.

    Article  CAS  PubMed  Google Scholar 

  5. Glazer L, Shilo BZ. The Drosophila FGF-R homolog is expressed in the embryonic tracheal system and appears to be required for directed tracheal cell extension. Genes Dev. 1991;5(4):697–705. PubMed PMID: 1849109.

    Article  CAS  PubMed  Google Scholar 

  6. Klambt C, Glazer L, Shilo BZ. Breathless, a Drosophila FGF receptor homolog, is essential for migration of tracheal and specific midline glial cells. Genes Dev. 1992;6(9):1668–78. PubMed PMID: 1325393.

    Article  CAS  PubMed  Google Scholar 

  7. Nishida Y, Hata M, Nishizuka Y, Rutter WJ, Ebina Y. Cloning of a Drosophila cDNA encoding a polypeptide similar to the human insulin receptor precursor. Biochem Biophys Res Commun. 1986;141(2):474–81. PubMed PMID: 3099787.

    Article  CAS  PubMed  Google Scholar 

  8. Petruzzelli L, Herrera R, Arenas-Garcia R, Fernandez R, Birnbaum MJ, Rosen OM. Isolation of a Drosophila genomic sequence homologous to the kinase domain of the human insulin receptor and detection of the phosphorylated Drosophila receptor with an anti-peptide antibody. Proc Natl Acad Sci U S A. 1986;83(13):4710–4. PubMed PMID: 3014506.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Sprenger F, Stevens LM, Nusslein-Volhard C. The Drosophila gene torso encodes a putative receptor tyrosine kinase. Nature. 1989;338(6215):478–83. PubMed PMID: 2927509.

    Article  CAS  PubMed  Google Scholar 

  10. Loren CE, Scully A, Grabbe C, Edeen PT, Thomas J, McKeown M, et al. Identification and characterization of DAlk: a novel Drosophila melanogaster RTK which drives ERK activation in vivo. Genes Cells. 2001;6(6):531–44. PubMed PMID: 11442633.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Boyle M, Nighorn A, Thomas JB. Drosophila Eph receptor guides specific axon branches of mushroom body neurons. Development. 2006;133(9):1845–54. PubMed PMID: 16613832.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Duchek P, Somogyi K, Jekely G, Beccari S, Rorth P. Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell. 2001;107(1):17–26. PubMed PMID: 11595182.

    Article  CAS  PubMed  Google Scholar 

  13. Banerjee U, Renfranz PJ, Pollock JA, Benzer S. Molecular characterization and expression of sevenless, a gene involved in neuronal pattern formation in the Drosophila eye. Cell. 1987;49(2):281–91. PubMed PMID: 2882857.

    Article  CAS  PubMed  Google Scholar 

  14. Hafen E, Basler K, Edstroem JE, Rubin GM. Sevenless, a cell-specific homeotic gene of Drosophila, encodes a putative transmembrane receptor with a tyrosine kinase domain. Science. 1987;236(4797):55–63. PubMed PMID: 2882603.

    Article  CAS  PubMed  Google Scholar 

  15. Yoshikawa S, McKinnon RD, Kokel M, Thomas JB. Wnt-mediated axon guidance via the Drosophila Derailed receptor. Nature. 2003;422(6932):583–8. PubMed PMID: 12660735.

    Article  CAS  PubMed  Google Scholar 

  16. Wang S, Tsarouhas V, Xylourgidis N, Sabri N, Tiklova K, Nautiyal N, et al. The tyrosine kinase Stitcher activates Grainy head and epidermal wound healing in Drosophila. Nat Cell Biol. 2009;11(7):890–5. PubMed PMID: 19525935.

    Article  CAS  PubMed  Google Scholar 

  17. Beck G, Munno DW, Levy Z, Dissel HM, Van-Minnen J, Syed NI, et al. Neurotrophic activities of trk receptors conserved over 600 million years of evolution. J Neurobiol. 2004;60(1):12–20. PubMed PMID: 15188268.

    Article  CAS  PubMed  Google Scholar 

  18. Alvarado D, Klein DE, Lemmon MA. Structural basis for negative cooperativity in growth factor binding to an EGF receptor. Cell. 2010;142(4):568–79. PubMed PMID: 20723758.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ambrosio L, Mahowald AP, Perrimon N. Requirement of the Drosophila raf homologue for torso function. Nature. 1989;342(6247):288–91. PubMed PMID: 2554148.

    Article  CAS  PubMed  Google Scholar 

  20. Brand AH, Perrimon N. Raf acts downstream of the EGF receptor to determine dorsoventral polarity during Drosophila oogenesis. Genes Dev. 1994;8(5):629–39. PubMed PMID: 7926754.

    Article  CAS  PubMed  Google Scholar 

  21. Dossenbach C, Rock S, Affolter M. Specificity of FGF signaling in cell migration in Drosophila. Development. 2001;128(22):4563–72. PubMed PMID: 11714681.

    CAS  PubMed  Google Scholar 

  22. Vincent S, Wilson R, Coelho C, Affolter M, Leptin M. The Drosophila protein Dof is specifically required for FGF signaling. Mol Cell. 1998;2(4):515–25. PubMed PMID: 9809073.

    Article  CAS  PubMed  Google Scholar 

  23. Nagaraj R, Banerjee U. The little R cell that could. Int J Dev Biol. 2004;48(8–9):755–60. PubMed PMID: 15558468.

    Article  CAS  PubMed  Google Scholar 

  24. Gabay L, Seger R, Shilo BZ. MAP kinase in situ activation atlas during Drosophila embryogenesis. Development. 1997;124(18):3535–41. PubMed PMID: 9342046.

    CAS  PubMed  Google Scholar 

  25. Gabay L, Seger R, Shilo BZ. In situ activation pattern of Drosophila EGF receptor pathway during development. Science. 1997;277(5329):1103–6. PubMed PMID: 9262480.

    Article  CAS  PubMed  Google Scholar 

  26. Bill A, Schmitz A, Albertoni B, Song JN, Heukamp LC, Walrafen D, et al. Cytohesins are cytoplasmic ErbB receptor activators. Cell. 2010;143(2):201–11. PubMed PMID: 20946980.

    Article  CAS  PubMed  Google Scholar 

  27. Lee JR, Urban S, Garvey CF, Freeman M. Regulated intracellular ligand transport and proteolysis control EGF signal activation in Drosophila. Cell. 2001;107(2):161–71. PubMed PMID: 11672524.

    Article  CAS  PubMed  Google Scholar 

  28. Tsruya R, Schlesinger A, Reich A, Gabay L, Sapir A, Shilo BZ. Intracellular trafficking by Star regulates cleavage of the Drosophila EGF receptor ligand Spitz. Genes Dev. 2002;16(2):222–34. PubMed PMID: 11799065.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Urban S, Lee JR, Freeman M. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell. 2001;107(2):173–82. PubMed PMID: 11672525.

    Article  CAS  PubMed  Google Scholar 

  30. Tsruya R, Wojtalla A, Carmon S, Yogev S, Reich A, Bibi E, et al. Rhomboid cleaves Star to regulate the levels of secreted Spitz. EMBO J. 2007;26(5):1211–20. PubMed PMID: 17304216.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Yogev S, Schejter ED, Shilo BZ. Drosophila EGFR signalling is modulated by differential compartmentalization of Rhomboid intramembrane proteases. EMBO J. 2008;27(8):1219–30. PubMed PMID: 18369317.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Golembo M, Schweitzer R, Freeman M, Shilo BZ. Argos transcription is induced by the Drosophila EGF receptor pathway to form an inhibitory feedback loop. Development. 1996;122(1):223–30. PubMed PMID: 8565833.

    CAS  PubMed  Google Scholar 

  33. Klein DE, Nappi VM, Reeves GT, Shvartsman SY, Lemmon MA. Argos inhibits epidermal growth factor receptor signalling by ligand sequestration. Nature. 2004;430(7003):1040–4. PubMed PMID: 15329724.

    Article  CAS  PubMed  Google Scholar 

  34. Ghiglione C, Carraway 3rd KL, Amundadottir LT, Boswell RE, Perrimon N, Duffy JB. The transmembrane molecule kekkon 1 acts in a feedback loop to negatively regulate the activity of the Drosophila EGF receptor during oogenesis. Cell. 1999;96(6):847–56. PubMed PMID: 10102272.

    Article  CAS  PubMed  Google Scholar 

  35. Casci T, Vinos J, Freeman M. Sprouty, an intracellular inhibitor of Ras signaling. Cell. 1999;96(5):655–65. PubMed PMID: 10089881.

    Article  CAS  PubMed  Google Scholar 

  36. Kramer S, Okabe M, Hacohen N, Krasnow MA, Hiromi Y. Sprouty: a common antagonist of FGF and EGF signaling pathways in Drosophila. Development. 1999;126(11):2515–25. PubMed PMID: 10226010.

    CAS  PubMed  Google Scholar 

  37. Reich A, Sapir A, Shilo B. Sprouty is a general inhibitor of receptor tyrosine kinase signaling. Development. 1999;126(18):4139–47. PubMed PMID: 10457022.

    CAS  PubMed  Google Scholar 

  38. Ohshiro T, Emori Y, Saigo K. Ligand-dependent activation of breathless FGF receptor gene in Drosophila developing trachea. Mech Dev. 2002;114(1–2):3–11. PubMed PMID: 12175485.

    Article  CAS  PubMed  Google Scholar 

  39. Shilo BZ. Regulating the dynamics of EGF receptor signaling in space and time. Development. 2005;132(18):4017–27. PubMed PMID: 16123311.

    Article  CAS  PubMed  Google Scholar 

  40. Dutt A, Canevascini S, Froehli-Hoier E, Hajnal A. EGF signal propagation during C. elegans vulval development mediated by ROM-1 rhomboid. PLoS Biol. 2004;2(11):e334.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Sapir A, Schweitzer R, Shilo BZ. Sequential activation of the EGF receptor pathway during Drosophila oogenesis establishes the dorsoventral axis. Development. 1998;125(2):191–200. PubMed PMID: 9486793.

    CAS  PubMed  Google Scholar 

  42. Wasserman JD, Freeman M. An autoregulatory cascade of EGF receptor signaling patterns the Drosophila egg. Cell. 1998;95(3):355–64. PubMed PMID: 9814706.

    Article  CAS  PubMed  Google Scholar 

  43. Baonza A, Casci T, Freeman M. A primary role for the epidermal growth factor receptor in ommatidial spacing in the Drosophila eye. Curr Biol. 2001;11(6):396–404. PubMed PMID: 11301250.

    Article  CAS  PubMed  Google Scholar 

  44. Gabay L, Scholz H, Golembo M, Klaes A, Shilo BZ, Klambt C. EGF receptor signaling induces pointed P1 transcription and inactivates Yan protein in the Drosophila embryonic ventral ectoderm. Development. 1996;122(11):3355–62. PubMed PMID: 8951052.

    CAS  PubMed  Google Scholar 

  45. Klambt C. The Drosophila gene pointed encodes two ETS-like proteins which are involved in the development of the midline glial cells. Development. 1993;117(1):163–76. PubMed PMID: 8223245.

    CAS  PubMed  Google Scholar 

  46. Shwartz A, Yogev S, Schejter ED, Shilo BZ. Sequential activation of ETS proteins provides a sustained transcriptional response to EGFR signaling. Development. 2013;140(13):2746–54. PubMed PMID: 23757412.

    Article  CAS  PubMed  Google Scholar 

  47. Friedman A, Perrimon N. A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling. Nature. 2006;444(7116):230–4. PubMed PMID: 17086199.

    Article  CAS  PubMed  Google Scholar 

  48. Schlesinger A, Kiger A, Perrimon N, Shilo BZ. Small wing PLCgamma is required for ER retention of cleaved Spitz during eye development in Drosophila. Dev Cell. 2004;7(4):535–45. PubMed PMID: 15469842.

    Article  CAS  PubMed  Google Scholar 

  49. Friedman A, Perrimon N. Genetic screening for signal transduction in the era of network biology. Cell. 2007;128(2):225–31. PubMed PMID: 17254958.

    Article  CAS  PubMed  Google Scholar 

  50. Jekely G, Sung HH, Luque CM, Rorth P. Regulators of endocytosis maintain localized receptor tyrosine kinase signaling in guided migration. Dev Cell. 2005;9(2):197–207. PubMed PMID: 16054027.

    Article  CAS  PubMed  Google Scholar 

  51. O’Neill EM, Rebay I, Tjian R, Rubin GM. The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell. 1994;78(1):137–47. PubMed PMID: 8033205.

    Article  PubMed  Google Scholar 

  52. Rebay I, Rubin GM. Yan functions as a general inhibitor of differentiation and is negatively regulated by activation of the Ras1/MAPK pathway. Cell. 1995;81(6):857–66. PubMed PMID: 7781063.

    Article  CAS  PubMed  Google Scholar 

  53. Melen GJ, Levy S, Barkai N, Shilo BZ. Threshold responses to morphogen gradients by zero-order ultrasensitivity. Mol Syst Biol. 2005;1:2005.0028. PubMed PMID: 16729063.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Flores GV, Duan H, Yan H, Nagaraj R, Fu W, Zou Y, et al. Combinatorial signaling in the specification of unique cell fates. Cell. 2000;103(1):75–85. PubMed PMID: 11051549.

    Article  CAS  PubMed  Google Scholar 

  55. Halfon MS, Carmena A, Gisselbrecht S, Sackerson CM, Jimenez F, Baylies MK, et al. Ras pathway specificity is determined by the integration of multiple signal-activated and tissue-restricted transcription factors. Cell. 2000;103(1):63–74. PubMed PMID: 11051548.

    Article  CAS  PubMed  Google Scholar 

  56. Xu C, Kauffmann RC, Zhang J, Kladny S, Carthew RW. Overlapping activators and repressors delimit transcriptional response to receptor tyrosine kinase signals in the Drosophila eye. Cell. 2000;103(1):87–97. PubMed PMID: 11051550.

    Article  CAS  PubMed  Google Scholar 

  57. Jimenez G, Guichet A, Ephrussi A, Casanova J. Relief of gene repression by torso RTK signaling: role of capicua in Drosophila terminal and dorsoventral patterning. Genes Dev. 2000;14(2):224–31. PubMed PMID: 10652276.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Roch F, Jimenez G, Casanova J. EGFR signalling inhibits Capicua-dependent repression during specification of Drosophila wing veins. Development. 2002;129(4):993–1002. PubMed PMID: 11861482.

    CAS  PubMed  Google Scholar 

  59. Hasson P, Egoz N, Winkler C, Volohonsky G, Jia S, Dinur T, et al. EGFR signaling attenuates Groucho-dependent repression to antagonize Notch transcriptional output. Nat Genet. 2005;37(1):101–5. PubMed PMID: 15592470.

    CAS  PubMed  Google Scholar 

  60. Hasson P, Paroush Z. Crosstalk between the EGFR and other signalling pathways at the level of the global transcriptional corepressor Groucho/TLE. Br J Cancer. 2007;96(Suppl):R21–5. PubMed PMID: 17393581.

    PubMed  Google Scholar 

Download references

Acknowledgments

I am grateful to my lab members that have contributed throughout the years to deciphering many of the paradigms discussed here and to my colleagues for discussions. This work was funded by an ISF converging technologies grant. B.S. is an incumbent of the Hilda and Cecil Lewis chair in Molecular Genetics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben-Zion Shilo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shilo, BZ. (2015). RTKs in Invertebrates: Lessons in Signal Transduction. In: Wheeler, D., Yarden, Y. (eds) Receptor Tyrosine Kinases: Structure, Functions and Role in Human Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2053-2_3

Download citation

Publish with us

Policies and ethics