Skip to main content

The Best and the Brightest: Exploiting Tryptophan-Sensitized Tb3+ Luminescence to Engineer Lanthanide-Binding Tags

  • Protocol
  • First Online:
Book cover Peptide Libraries

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1248))

Abstract

Consider the lanthanide metals, comprising lanthanum through lutetium. Lanthanides form stable cations with a +3 charge, and these ions exhibit a variety of useful physical properties (long-lifetime luminescence, paramagnetism, anomalous X-ray scattering) that are amenable to studies of biomolecules. The absence of lanthanide ions in living systems means that background signals are generally a nonissue; however, to exploit the advantageous properties it is necessary to engineer a robust lanthanide-binding sequence that can be appended to any macromolecules of interest. To this end, the luminescence produced by tryptophan-sensitized Tb3+ has been used as a selection marker for peptide sequences that avidly chelate these ions. A combinatorial split-and-pool library that uses two orthogonal linkers—one that is cleaved for selection and one that is cleaved for sequencing and characterization—has been used to develop lanthanide-binding tags (LBTs): peptides of 15–20 amino acids with low-nM affinity for Tb3+. Further validating the success of this screen, knowledge about LBTs has enabled the introduction of a lanthanide-binding loop in place of one of the four native calcium-binding loops within the protein calcineurin B.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cotton S (2006) Lanthanides and actinides. Oxford University Press, New York

    Book  Google Scholar 

  2. Lee L, Sykes BD (1983) Use of lanthanide-induced nuclear magnetic resonance shifts for determination of protein structure in solution: EF calcium binding site of carp parvalbumin. Biochemistry 22:4366–4373

    Article  CAS  PubMed  Google Scholar 

  3. Pintacuda G, John M, Su X-C, Otting G (2007) NMR structure determination of protein-ligand complexes by lanthanide labeling. Acc Chem Res 40:206–212

    Article  CAS  PubMed  Google Scholar 

  4. Harker D (1956) The determination of the phases of the structure factors of non-centrosymmetric crystals by the method of double isomorphous replacement. Acta Crystallogr 9:1–9

    Article  CAS  Google Scholar 

  5. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  6. Richardson FS (1982) Terbium (III) and europium (III) ions as luminescent probes and stains for biomolecular systems. Chem Rev 82:541–552

    Article  CAS  Google Scholar 

  7. Burroughs SE, Horrocks WD, Ren H, Klee CB (1994) Characterization of the lanthanide ion-binding properties of calcineurin-B using laser-induced luminescence spectroscopy. Biochemistry 33:10428–10436

    Article  CAS  PubMed  Google Scholar 

  8. Pidcock E, Moore G (2001) Structural characteristics of protein binding sites for calcium and lanthanide ions. J Biol Inorg Chem 6:479–489

    Article  CAS  PubMed  Google Scholar 

  9. Kirk WR, Wessels WS, Prendergast FG (1993) Lanthanide-dependent perturbations of luminescence in indolylethylenediaminetetraacetic acid-lanthanide chelate. J Phys Chem 97:10326–10340

    Article  CAS  Google Scholar 

  10. Horrocks WD Jr, Sudnick DR (1981) Lanthanide ion luminescence probes of the structure of biological macromolecules. Acc Chem Res 14:384–392

    Article  CAS  Google Scholar 

  11. Beeby A, Clarkson IM, Dickins RS, Faulkner S, Parker D, Royle L, de Sousa AS, Williams JAG, Woods M (1999) Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states. J Chem Soc Perkin Trans 2:493–504

    Article  Google Scholar 

  12. MacManus JP, Hogue CW, Marsden BJ, Sikorska M, Szabo AG (1990) Terbium luminescence in synthetic peptide loops from calcium-binding proteins with different energy donors. J Biol Chem 265:10358–10366

    CAS  PubMed  Google Scholar 

  13. Franz KJ, Nitz M, Imperiali B (2003) Lanthanide-binding tags as versatile protein coexpression probes. ChemBioChem 4:265–271

    Article  CAS  PubMed  Google Scholar 

  14. Nitz M, Franz KJ, Maglathlin RL, Imperiali B (2003) A powerful combinatorial screen to identify high-affinity terbium(III)-binding peptides. ChemBioChem 4:272–276

    Article  CAS  PubMed  Google Scholar 

  15. Pribil R (1967) Present state of complexometry-IV determination of rare earths. Talanta 14:619–627

    Article  CAS  PubMed  Google Scholar 

  16. Binstead R, Jung B, Zuberbühler A. SPECFIT/32 for Windows. Version 3.0.39; SPECFIT/32 provides global analysis of equilibrium and kinetic systems using singular value decomposition and nonlinear regression modeling by the Levenberg-Marquardt method. Spectrum Software Associates, Marlborough, MA

    Google Scholar 

  17. Hoffmann C, Blechschmidt D, Krüger R (2002) Mass spectrometric sequencing of individual peptides from combinatorial libraries via specific generation of chain-terminated sequences. J Comb Chem 4:79–86

    Article  CAS  PubMed  Google Scholar 

  18. Martin LJ, Sculimbrene BR, Nitz M, Imperiali B (2005) Rapid combinatorial screening of peptide libraries for the selection of lanthanide-binding tags (LBTs). QSAR Comb Sci 24:1149–1157

    Article  CAS  Google Scholar 

  19. Nitz M, Sherawat M, Franz KJ, Peisach E, Allen KN, Imperiali B (2004) Structural origin of the high affinity of a chemically evolved lanthanide-binding peptide. Angew Chem Int Ed Engl 43:3682–3685

    Article  CAS  PubMed  Google Scholar 

  20. Martin LJ (2008) Development of lanthanide-binding tags (LBTs) as powerful and versatile peptides for use in studies of proteins and protein interactions. Massachusetts Institute of Technology

    Google Scholar 

  21. Jin L, Harrison SC (2002) Crystal structure of human calcineurin complexed with cyclosporin A and human cyclophilin. Proc Nat Acad Sci U S A 99:13522–13526

    Article  CAS  Google Scholar 

  22. Yang S-A, Klee CB (2000) Low affinity Ca2+-binding sites of calcineurin b mediate conformational changes in calcineurin A. Biochemistry 39:16147–16154

    Article  CAS  PubMed  Google Scholar 

  23. Kissinger CR, Parge HE, Knighton DR, Lewis CT, Pelletier LA, Tempczyk A, Kalish VJ, Tucker KD, Showalter RE, Moomaw EW, Gastinel LN, Habuka N, Chen X, Maldonado F, Barker JE, Bacquet R, Villafranca JE (1995) Crystal structures of human calcineurin and the human FKBP12-FK506-calcineurin complex. Nature 378:641–644

    Article  CAS  PubMed  Google Scholar 

  24. Feng B, Stemmer PM (1999) Interactions of calcineurin A, calcineurin B, and Ca2+. Biochemistry 38:12481–12489

    Article  CAS  PubMed  Google Scholar 

  25. Gallagher SC, Gao Z-H, Li S, Dyer RB, Trewhella J, Klee CB (2001) There is communication between all four Ca(2+)-bindings sites of calcineurin B. Biochemistry 40:12094–12102

    Article  CAS  PubMed  Google Scholar 

  26. Drake SK, Lee KL, Falke JJ (1996) Tuning the equilibrium ion affinity and selectivity of the EF-hand calcium binding motif: substitutions at the gateway position. Biochemistry 35:6697–6705

    Article  CAS  PubMed  Google Scholar 

  27. Hachmann J, Lebl M (2006) Alternative to piperidine in Fmoc solid-phase synthesis. J Comb Chem 8:149

    Article  CAS  PubMed  Google Scholar 

  28. Martin LJ, Hähnke MJ, Nitz M, Wöhnert J, Silvaggi NR, Allen KN, Schwalbe H, Imperiali B (2007) Double-lanthanide-binding tags: design, photophysical properties, and NMR applications. J Am Chem Soc 129:7106–7113

    Article  CAS  PubMed  Google Scholar 

  29. Wöhnert J, Franz KJ, Nitz M, Imperiali B, Schwalbe H (2003) Protein alignment by a coexpressed lanthanide-binding tag for the measurement of residual dipolar couplings. J Am Chem Soc 125:13338–13339

    Article  PubMed  Google Scholar 

  30. Su X-C, Huber T, Dixon NE, Otting G (2006) Site-specific labelling of proteins with a rigid lanthanide-binding tag. ChemBioChem 7:1599–1604

    Article  CAS  PubMed  Google Scholar 

  31. Su X-C, McAndrew K, Huber T, Otting G (2008) Lanthanide-binding peptides for NMR measurements of residual dipolar couplings and paramagnetic effects from multiple angles. J Am Chem Soc 130:1681–1687

    Article  CAS  PubMed  Google Scholar 

  32. Goda N, Tenno T, Inomata K, Iwaya N, Sasaki Y, Shirakawa M, Hiroaki H (2007) LBT/PTD dual tagged vector for purification, cellular protein delivery and visualization in living cells. Biochim Biophys Acta 1773:141–146

    Article  CAS  PubMed  Google Scholar 

  33. Sculimbrene BR, Imperiali B (2006) Lanthanide-binding tags as luminescent probes for studying protein interactions. J Am Chem Soc 128:7346–7352

    Article  CAS  PubMed  Google Scholar 

  34. Reynolds AM, Sculimbrene BR, Imperiali B (2008) Lanthanide-binding tags with unnatural amino acids: sensitizing Tb3+ and Eu3+ luminescence at longer wavelengths. Bioconjug Chem 19:588–591

    Article  CAS  PubMed  Google Scholar 

  35. Silvaggi NR, Martin LJ, Schwalbe H, Imperiali B, Allen KN (2007) Double-lanthanide-binding tags for macromolecular crystallographic structure determination. J Am Chem Soc 129:7114–7120

    Article  CAS  PubMed  Google Scholar 

  36. Daughtry KD, Martin LJ, Sarraju A, Imperiali B, Allen KN (2012) Tailoring encodable lanthanide-binding tags as MRI contrast agents. ChemBioChem 13:2567–2574

    Article  CAS  PubMed  Google Scholar 

  37. Barthelmes K, Reynolds AM, Peisach E, Jonker HRA, DeNunzio NJ, Allen KN, Imperiali B, Schwalbe H (2011) Engineering encodable lanthanide-binding tags into loop regions of proteins. J Am Chem Soc 133:808–819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The cloning and expression of calcineurin B was done in collaboration with Prof. Patrick G. Hogan and Dr. Alina Iuga of Harvard Medical School, and their contributions are gratefully acknowledged. The authors acknowledge support for research on LBTs from the National Science Foundation (Grant MCB 0744415).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Imperiali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Martin, L.J., Imperiali, B. (2015). The Best and the Brightest: Exploiting Tryptophan-Sensitized Tb3+ Luminescence to Engineer Lanthanide-Binding Tags. In: Derda, R. (eds) Peptide Libraries. Methods in Molecular Biology, vol 1248. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2020-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2020-4_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2019-8

  • Online ISBN: 978-1-4939-2020-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics