Skip to main content

Engineering of Customized Meganucleases via In Vitro Compartmentalization and In Cellulo Optimization

  • Protocol
  • First Online:
Chromosomal Mutagenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1239))

Abstract

LAGLIDADG homing endonucleases (also referred to as “meganucleases”) are compact DNA cleaving enzymes that specifically recognize long target sequences (approximately 20 base pairs), and thus serve as useful tools for therapeutic genome engineering. While stand-alone meganucleases are sufficiently active to introduce targeted genome modification, they can be fused to additional sequence-specific DNA binding domains in order to improve their performance in target cells. In this chapter, we describe an approach to retarget meganucleases to DNA targets of interest (such as sequences found in genes and cis regulatory regions), which is feasible in an academic laboratory environment. A combination of two selection systems, in vitro compartmentalization and two-plasmid cleavage assay in bacteria, allow for efficient engineering of meganucleases that specifically cleave a wide variety of DNA sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kolb AF, Coates CJ, Kaminski JM, Summers JB, Miller AD, Segal DJ (2005) Site-directed genome modification: nucleic acid and protein modules for targeted integration and gene correction. Trends Biotechnol 23:399–406

    Article  CAS  PubMed  Google Scholar 

  2. Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188:773–782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  PubMed  Google Scholar 

  4. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846

    Article  CAS  PubMed  Google Scholar 

  5. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B (2011) TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39:359–372

    Article  PubMed Central  PubMed  Google Scholar 

  7. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Arnould S, Perez C, Cabaniols JP, Smith J, Gouble A, Grizot S, Epinat JC, Duclert A, Duchateau P, Paques F (2007) Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells. J Mol Biol 371:49–65

    Article  CAS  PubMed  Google Scholar 

  10. Stoddard BL (2011) Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19:7–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Segal DJ, Meckler JF (2013) Genome engineering at the dawn of the golden age. Annu Rev Genomics Hum Genet 14:135–158

    Article  CAS  PubMed  Google Scholar 

  12. Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Paques F (2011) Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 11:11–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Brunet E, Simsek D, Tomishima M, DeKelver R, Choi VM, Gregory P, Urnov F, Weinstock DM, Jasin M (2009) Chromosomal translocations induced at specified loci in human stem cells. Proc Natl Acad Sci U S A 106:10620–10625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Lee HJ, Kweon J, Kim E, Kim S, Kim JS (2012) Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Genome Res 22:539–548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Sollu C, Pars K, Cornu TI, Thibodeau-Beganny S, Maeder ML, Joung JK, Heilbronn R, Cathomen T (2010) Autonomous zinc-finger nuclease pairs for targeted chromosomal deletion. Nucleic Acids Res 38:8269–8276

    Article  PubMed Central  PubMed  Google Scholar 

  16. Stoddard BL (2005) Homing endonuclease structure and function. Q Rev Biophys 38:49–95

    Article  CAS  PubMed  Google Scholar 

  17. Certo MT, Ryu BY, Annis JE, Garibov M, Jarjour J, Rawlings DJ, Scharenberg AM (2011) Tracking genome engineering outcome at individual DNA breakpoints. Nat Methods 8:671–676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Daboussi F, Zaslavskiy M, Poirot L, Loperfido M, Gouble A, Guyot V, Leduc S, Galetto R, Grizot S, Oficjalska D et al (2012) Chromosomal context and epigenetic mechanisms control the efficacy of genome editing by rare-cutting designer endonucleases. Nucleic Acids Res 40:6367–6379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Gao H, Smith J, Yang M, Jones S, Djukanovic V, Nicholson MG, West A, Bidney D, Falco SC, Jantz D et al (2010) Heritable targeted mutagenesis in maize using a designed endonuclease. Plant J 61:176–187

    Article  CAS  PubMed  Google Scholar 

  20. Grizot S, Smith J, Daboussi F, Prieto J, Redondo P, Merino N, Villate M, Thomas S, Lemaire L, Montoya G et al (2009) Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease. Nucleic Acids Res 37:5405–5419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Takeuchi R, Lambert AR, Mak AN, Jacoby K, Dickson RJ, Gloor GB, Scharenberg AM, Edgell DR, Stoddard BL (2011) Tapping natural reservoirs of homing endonucleases for targeted gene modification. Proc Natl Acad Sci U S A 108:13077–13082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Boissel SJ, Astrakhan A, Jarjour J, Adey A, Shendure J, Stoddard BL, Certo MT, Baker D, Scharenberg AM (2014) MegaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. Nucleic Acids Res 42:2591

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Takeuchi R, Choi M, Stoddard BL (2014) Redesign of extensive protein-DNA interfaces of meganucleases using iterative cycles of in vitro compartmentalization. PNAS USA 111: 4061–4066

    Google Scholar 

  24. Miller OJ, Bernath K, Agresti JJ, Amitai G, Kelly BT, Mastrobattista E, Taly V, Magdassi S, Tawfik DS, Griffiths AD (2006) Directed evolution by in vitro compartmentalization. Nat Methods 3:561–570

    Article  CAS  PubMed  Google Scholar 

  25. Tawfik DS, Griffiths AD (1998) Man-made cell-like compartments for molecular evolution. Nat Biotechnol 16:652–656

    Article  CAS  PubMed  Google Scholar 

  26. Zheng Y, Roberts RJ (2007) Selection of restriction endonucleases using artificial cells. Nucleic Acids Res 35:e83

    Article  PubMed Central  PubMed  Google Scholar 

  27. Doyon JB, Pattanayak V, Meyer CB, Liu DR (2006) Directed evolution and substrate specificity profile of homing endonuclease I-SceI. J Am Chem Soc 128:2477–2484

    Article  CAS  PubMed  Google Scholar 

  28. Taylor GK, Petrucci LH, Lambert AR, Baxter SK, Jarjour J, Stoddard BL (2012) LAHEDES: the LAGLIDADG homing endonuclease database and engineering server. Nucleic Acids Res 40:W110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Molina R, Redondo P, Stella S, Marenchino M, D’Abramo M, Gervasio FL, Epinat JC, Valton J, Grizot S, Duchateau P et al (2012) Non-specific protein-DNA interactions control I-CreI target binding and cleavage. Nucleic Acids Res 40:6936–6945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry L. Stoddard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Takeuchi, R., Choi, M., Stoddard, B.L. (2015). Engineering of Customized Meganucleases via In Vitro Compartmentalization and In Cellulo Optimization. In: Pruett-Miller, S. (eds) Chromosomal Mutagenesis. Methods in Molecular Biology, vol 1239. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1862-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1862-1_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1861-4

  • Online ISBN: 978-1-4939-1862-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics