Skip to main content

Neural Mechanisms of Rhythm Perception: Present Findings and Future Directions

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 829))

Abstract

The capacity to synchronize movements to the beat in music is a complex, and apparently uniquely human characteristic. Synchronizing movements to the beat requires beat perception, which entails prediction of future beats in rhythmic sequences of temporal intervals. Absolute timing mechanisms, where patterns of temporal intervals are encoded as a series of absolute durations, cannot fully explain beat perception. Beat perception seems better accounted for by relative timing mechanisms, where temporal intervals of a pattern are coded relative to a periodic beat interval. Evidence from behavioral, neuroimaging, brain stimulation and neuronal cell recording studies suggests a functional dissociation between the neural substrates of absolute and relative timing. This chapter reviews current findings on relative timing in the context of rhythm and beat perception.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Teki S, Grube M, Griffiths TD. A unified model of time perception accounts for duration-based and beat-based timing mechanisms. Front Integr Neurosci. 2011;5:90.

    PubMed  PubMed Central  Google Scholar 

  2. Merchant H, Harrington DL, Meck WH. Neural basis of the perception and estimation of time. Annu Rev Neurosci. 2013;36:313–36.

    Article  PubMed  CAS  Google Scholar 

  3. Cooper G, Meyer LB. The rhythmic structure of music. Chicago: University of Chicago Press; 1960. p. 212.

    Google Scholar 

  4. Large EW. Resonating to musical rhythm: theory and experiment. In: Grondin S, editor. Psychology of time. Bingley: Emerald; 2008.

    Google Scholar 

  5. Lerdahl F, Jackendoff R. A generative theory of tonal music. Cambridge: MIT Press; 1983.

    Google Scholar 

  6. London J. Hearing in time: psychological aspects of musical meter. New York: Oxford University Press; 2004. p. 195.

    Book  Google Scholar 

  7. Palmer C, Krumhansl CL. Mental representations for musical meter. J Exp Psychol Hum Percept Perform. 1990;16(4):728–41.

    Article  PubMed  CAS  Google Scholar 

  8. Benjamin WE. A theory of musical meter. Music Percept. 1984;1:355–413.

    Article  Google Scholar 

  9. Grahn JA, Brett M. Rhythm and beat perception in motor areas of the brain. J Cogn Neurosci. 2007;19(5):893–906.

    Article  PubMed  Google Scholar 

  10. Povel DJ, Essens P. Perception of temporal patterns. Music Percept. 1985;2(4):411.

    Article  Google Scholar 

  11. Patel AD, Iversen JR, Chen Y, Repp BH. The influence of metricality and modality on synchronization with a beat. Exp Brain Res. 2005;163(2):226–38.

    Article  PubMed  Google Scholar 

  12. Chen JL, Penhune VB, Zatorre RJ. Moving on time: brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training. J Cogn Neurosci. 2008;20(2):226–39.

    Article  PubMed  Google Scholar 

  13. Essens PJ, Povel DJ. Metrical and nonmetrical representations of temporal patterns. Percept Psychophys. 1985;37(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  14. Grahn JA, Brett M. Impairment of beat-based rhythm discrimination in Parkinson’s disease. Cortex. 2009;45(1):54–61.

    Article  PubMed  Google Scholar 

  15. Geiser E, Notter M, Gabrieli JD. A corticostriatal neural system enhances auditory perception through temporal context processing. J Neurosci. 2012;32(18):6177–82.

    Article  PubMed  CAS  Google Scholar 

  16. Chen JL, Penhune VB, Zatorre RJ. Listening to musical rhythms recruits motor regions of the brain. Cereb Cortex. 2008;18(12):2844–54.

    Article  PubMed  Google Scholar 

  17. Kung SJ, Chen JL, Zatorre RJ, Penhune VB. Interacting cortical and basal ganglia networks underlying finding and tapping to the musical beat. J Cogn Neurosci. 2013;25(3):401–20.

    Article  PubMed  Google Scholar 

  18. Zarco W, Merchant H, Prado L, Mendez JC. Subsecond timing in primates: comparison of interval production between human subjects and rhesus monkeys. J Neurophysiol. 2009;102(6):3191–202.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Merchant H, Honing H. Are non-human primates capable of rhythmic entrainment? Evidence for the gradual audiomotor evolution hypothesis. Front Neurosci. 2013;7:274.

    PubMed  PubMed Central  Google Scholar 

  20. Teki S, Grube M, Kumar S, Griffiths TD. Distinct neural substrates of duration-based and beat-based auditory timing. J Neurosci. 2011;31(10):3805–12.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Grahn JA, Rowe JB. Feeling the beat: premotor and striatal interactions in musicians and nonmusicians during beat perception. J Neurosci. 2009;29(23):7540–8. PubMed PMID: 19515922. Pubmed Central PMCID: 2702750.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Grahn JA, Rowe JB. Finding and feeling the musical beat: striatal dissociations between detection and prediction of regularity. Cereb Cortex. 2013;23(4):913–21.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ramnani N, Passingham RE. Changes in the human brain during rhythm learning. J Cogn Neurosci. 2001;13(7):952–66.

    Article  PubMed  CAS  Google Scholar 

  24. Grube M, Cooper FE, Chinnery PF, Griffiths TD. Dissociation of duration-based and beat-based auditory timing in cerebellar degeneration. Proc Natl Acad Sci U S A. 2010;107(25):11597–601.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Grube M, Lee KH, Griffiths TD, Barker AT, Woodruff PW. Transcranial magnetic theta-burst stimulation of the human cerebellum distinguishes absolute, duration-based from relative, beat-based perception of subsecond time intervals. Front Psychol. 2010;1:171.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Collier GL, Wright CE. Temporal rescaling of simple and complex ratios in rhythmic tapping. J Exp Psychol Hum Percept Perform. 1995;21(3):602–27.

    Google Scholar 

  27. Schubotz RI, von Cramon DY. Interval and ordinal properties of sequences are associated with distinct premotor areas. Cereb Cortex. 2001;11(3):210–22.

    Article  PubMed  CAS  Google Scholar 

  28. Ullen F, Forssberg H, Ehrsson HH. Neural networks for the coordination of the hands in time. J Neurophysiol. 2003;89(2):1126–35.

    Article  PubMed  Google Scholar 

  29. Bengtsson SL, Ullen F, Ehrsson HH, Hashimoto T, Kito T, Naito E, et al. Listening to rhythms activates motor and premotor cortices. Cortex. 2009;45(1):62–71.

    Article  PubMed  Google Scholar 

  30. Lewis PA, Wing AM, Pope PA, Praamstra P, Miall RC. Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping. Neuropsychologia. 2004;42(10):1301–12.

    Article  PubMed  CAS  Google Scholar 

  31. Grahn JA, Henry MJ, McAuley JD. FMRI investigation of cross-modal interactions in beat perception: audition primes vision, but not vice versa. Neuroimage. 2011;54:1231–43.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Farrugia N, Benoit C-E, Harding E, Kotz SA, Bella SD. Battery for the assessment of auditory sensorimotor and timing abilities. Inst Hum Cogn Brain Sci. 2012;18:9.

    Google Scholar 

  33. Cope TE, Grube M, Singh B, Burn DJ, Griffiths TD. The basal ganglia in perceptual timing: timing performance in multiple system atrophy and Huntington’s disease. Neuropsychologia. 2014;52:73–81.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci. 1973;20(4):415–55.

    Article  PubMed  CAS  Google Scholar 

  35. Schwartze M, Keller PE, Patel AD, Kotz SA. The impact of basal ganglia lesions on sensorimotor synchronization, spontaneous motor tempo, and the detection of tempo changes. Behav Brain Res. 2011;216(2):685–91.

    Article  PubMed  Google Scholar 

  36. Miller NS, Kwak Y, Bohnen NI, Muller ML, Dayalu P, Seidler RD. The pattern of striatal dopaminergic denervation explains sensorimotor synchronization accuracy in Parkinson’s disease. Behav Brain Res. 2013;257:100–10.

    Article  PubMed  CAS  Google Scholar 

  37. Riecker A, Wildgruber D, Mathiak K, Grodd W, Ackermann H. Parametric analysis of rate-dependent hemodynamic response functions of cortical and subcortical brain structures during auditorily cued finger tapping: a fMRI study. Neuroimage. 2003;18(3):731–9.

    Article  PubMed  Google Scholar 

  38. Phillips-Silver J, Toiviainen P, Gosselin N, Piche O, Nozaradan S, Palmer C, et al. Born to dance but beat deaf: a new form of congenital amusia. Neuropsychologia. 2011;49(5):961–9.

    Article  PubMed  Google Scholar 

  39. Grahn JA, McAuley JD. Neural bases of individual differences in beat perception. Neuroimage. 2009;47(4):1894–903.

    Article  PubMed  Google Scholar 

  40. Sowinski J, Dalla Bella S. Poor synchronization to the beat may result from deficient auditory-motor mapping. Neuropsychologia. 2013;51(10):1952–63.

    Article  PubMed  Google Scholar 

  41. Grahn JA, Schuit D. Individual differences in rhythmic ability: Behavioral and neuroimaging investigations. Psychomusicology. 2012;22(2):105–21.

    Article  Google Scholar 

  42. Bailey JA, Zatorre RJ, Penhune VB. Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance. J Cogn Neurosci. 2014;26:755–67.

    Google Scholar 

  43. Wiener M, Lohoff FW, Coslett HB. Double dissociation of dopamine genes and timing in humans. J Cogn Neurosci. 2011;23(10):2811–21.

    Article  PubMed  Google Scholar 

  44. Petrides M. Specialized systems for the processing of mnemonic information within the primate frontal cortex. Philos Trans R Soc Lond B Biol Sci. 1996;351(1346):1455–61. discussion 61-2.

    Article  PubMed  CAS  Google Scholar 

  45. Rao SM, Harrington DL, Haaland KY, Bobholz JA, Cox RW, Binder JR. Distributed neural systems underlying the timing of movements. J Neurosci. 1997;17(14):5528–35.

    PubMed  CAS  Google Scholar 

  46. Halsband U, Ito N, Tanji J, Freund HJ. The role of premotor cortex and the supplementary motor area in the temporal control of movement in man. Brain. 1993;116(Pt 1):243–66.

    Article  PubMed  Google Scholar 

  47. Merchant H, Zarco W, Perez O, Prado L, Bartolo R. Measuring time with different neural chronometers during a synchronization-continuation task. Proc Natl Acad Sci U S A. 2011;108(49):19784–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Merchant H, Pérez O, Zarco W, Gámez J. Interval tuning in the primate medial premotor cortex as a general timing mechanism. J Neurosci. 2013;33(21):9082–96.

    Article  PubMed  CAS  Google Scholar 

  49. Bartolo R, Merchant H. Information processing in the primate basal ganglia during sensory guided and internally driven rhythmic tapping. J Neurosci. 2014;34:3910–23.

    Google Scholar 

  50. Meck WH, Penney TB, Pouthas V. Cortico-striatal representation of time in animals and humans. Curr Opin Neurobiol. 2008;18(2):145–52.

    Article  PubMed  CAS  Google Scholar 

  51. Lewis PA, Miall RC. Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol. 2003;13(2):250–5.

    Article  PubMed  CAS  Google Scholar 

  52. Wiener M, Turkeltaub P, Coslett HB. The image of time: a voxel-wise meta-analysis. Neuroimage. 2010;49(2):1728–40.

    Article  PubMed  Google Scholar 

  53. Sakai K, Hikosaka O, Miyauchi S, Takino R, Tamada T, Iwata NK, et al. Neural representation of a rhythm depends on its interval ratio. J Neurosci. 1999;19(22):10074–81.

    PubMed  CAS  Google Scholar 

  54. Jantzen KJ, Steinberg FL, Kelso JA. Brain networks underlying human timing behavior are influenced by prior context. Proc Natl Acad Sci U S A. 2004;101(17):6815–20.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Ivry RB, Schlerf JE. Dedicated and intrinsic models of time perception. Trends Cogn Sci. 2008;12(7):273–80.

    Article  PubMed  Google Scholar 

  56. Jazayeri M, Shadlen MN. Temporal context calibrates interval timing. Nat Neurosci. 2010;13(8):1020–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Cicchini GM, Arrighi R, Cecchetti L, Giusti M, Burr DC. Optimal encoding of interval timing in expert percussionists. J Neurosci. 2012;32(3):1056–60.

    Article  PubMed  CAS  Google Scholar 

  58. Shi Z, Church RM, Meck WH. Bayesian optimization of time perception. Trends Cogn Sci. 2013;17(11):556–64.

    Article  PubMed  Google Scholar 

  59. Dawe LA, Platt JR, Racine RJ. Rhythm perception and differences in accent weights for musicians and nonmusicians. Percept Psychophys. 1995;57(6):905–14.

    Article  PubMed  CAS  Google Scholar 

  60. Povel DJ, Okkerman H. Accents in equitone sequences. Percept Psychophys. 1981;30(6):565–72.

    Article  PubMed  CAS  Google Scholar 

  61. Huron D, Royal M. What is melodic accent? Converging evidence from musical practice. Music Percept. 1996;13(4):489–516.

    Article  Google Scholar 

  62. Dawe LA, Platt JR, Racine RJ. Harmonic accents in inference of metrical structure and perception of rhythmic patterns. Percept Psychophys. 1993;54(6):794–807.

    Article  PubMed  CAS  Google Scholar 

  63. Hannon EE, Snyder JS, Eerola T, Krumhansl CL. The role of melodic and temporal cues in perceiving musical meter. J Exp Psychol Hum Percept Perform. 2004;30(5):956–74.

    Article  PubMed  Google Scholar 

  64. Temperley NM. Personal tempo and subjective accentuation. J Gen Psychol. 1963;68:267–87.

    Article  PubMed  CAS  Google Scholar 

  65. Ellis RJ, Jones MR. The role of accent salience and joint accent structure in meter perception. J Exp Psychol Hum Percept Perform. 2009;35(1):264–80.

    Article  PubMed  Google Scholar 

  66. Repp BH. Do metrical accents create illusory phenomenal accents? Atten Percept Psychophys. 2010;72(5):1390–403.

    Article  PubMed  Google Scholar 

  67. Parncutt R. A perceptual model of pulse salience and metrical accent in musical rhythms. Music Percept. 1994;11(4):409–64.

    Article  Google Scholar 

  68. Merchant H, Luciana M, Hooper C, Majestic S, Tuite P. Interval timing and Parkinson’s disease: heterogeneity in temporal performance. Exp Brain Res. 2008;184(2):233–48.

    Article  PubMed  Google Scholar 

  69. Wiener M, Lee YS, Lohoff FW, Coslett HB. Individual differences in the morphometry and activation of time perception networks are influenced by dopamine genotype. Neuroimage. 2013;89C:10–22.

    Google Scholar 

  70. Honing H, Merchant H, Haden GP, Prado L, Bartolo R. Rhesus monkeys (Macaca mulatta) detect rhythmic groups in music, but not the beat. PLoS One. 2012;7(12):e51369.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ann Leow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leow, LA., Grahn, J.A. (2014). Neural Mechanisms of Rhythm Perception: Present Findings and Future Directions. In: Merchant, H., de Lafuente, V. (eds) Neurobiology of Interval Timing. Advances in Experimental Medicine and Biology, vol 829. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1782-2_17

Download citation

Publish with us

Policies and ethics