Skip to main content

Quantification of Catecholamine Uptake in Adult Cardiac Myocytes

  • Protocol
  • First Online:
Book cover Nuclear G-Protein Coupled Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1234))

Abstract

In adult cardiac myocytes, multiple G protein-coupled receptors (GPCR) localize to and signal at the nucleus. These include endothelin B receptors, angiotensin type 1 and 2 receptors, β1- and β3-adrenergic receptors, and α1A- and α1B-adrenergic receptors. Initiation of signaling through nuclear GPCRs requires that ligands be produced within or transported into the cardiac myocytes, yet mechanisms whereby these ligands are produced or transported into cardiac myocytes are largely unclear. To activate nuclear adrenergic receptors in adult cardiac myocytes, uptake of endogenous catecholamines epinephrine and norepinephrine occurs via organic cation transporter 3 (OCT3), a member of the slc22a family of genes. This chapter details a method to detect and quantify catecholamine uptake in intact adult cardiac myocytes using a fluorescent-based catecholamine uptake assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boivin B, Chevalier D, Villeneuve LR et al (2003) Functional endothelin receptors are present on nuclei in cardiac ventricular myocytes. J Biol Chem 278:29153–29163

    Article  PubMed  CAS  Google Scholar 

  2. Merlen C, Farhat N, Luo X et al (2013) Intracrine endothelin signaling evokes IP3-dependent increases in nucleoplasmic Ca in adult cardiac myocytes. J Mol Cell Cardiol 37:189–202

    Article  Google Scholar 

  3. Lee DK, Lanca AJ, Cheng R et al (2004) Agonist-independent nuclear localization of the apelin, angiotensin AT1, and bradykinin B2 receptors. J Biol Chem 279:7901–7908

    Article  PubMed  CAS  Google Scholar 

  4. Tadevosyan A, Maguy A, Villeneuve LR et al (2010) Nuclear-delimited angiotensin receptor-mediated signaling regulates cardiomyocyte gene expression. J Biol Chem 285:22338–22349

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Huang Y, Wright CD, Merkwan CL et al (2007) An alpha1A-adrenergic-extracellular signal-regulated kinase survival signaling pathway in cardiac myocytes. Circulation 115:763–772

    Article  PubMed  CAS  Google Scholar 

  6. Wright CD, Chen Q, Baye NL et al (2008) Nuclear alpha1-adrenergic receptors signal activated ERK localization to caveolae in adult cardiac myocytes. Circ Res 103:992–1000

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Wright CD, Wu SC, Dahl EF et al (2012) Nuclear localization drives alpha1-adrenergic receptor oligomerization and signaling in cardiac myocytes. Cell Signal 24:794–802

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Boivin B, Lavoie C, Vaniotis G et al (2006) Functional beta-adrenergic receptor signalling on nuclear membranes in adult rat and mouse ventricular cardiomyocytes. Cardiovasc Res 71:69–78

    Article  PubMed  CAS  Google Scholar 

  9. Vaniotis G, Del Duca D, Trieu P et al (2011) Nuclear beta-adrenergic receptors modulate gene expression in adult rat heart. Cell Signal 23:89–98

    Article  PubMed  CAS  Google Scholar 

  10. Vaniotis G, Glazkova I, Merlen C et al (2013) Regulation of cardiac nitric oxide signaling by nuclear beta-adrenergic and endothelin receptors. J Mol Cell Cardiol 37:58–68

    Article  Google Scholar 

  11. Bkaily G, Choufani S, Sader S et al (2003) Activation of sarcolemma and nuclear membranes ET-1 receptors regulates transcellular calcium levels in heart and vascular smooth muscle cells. Can J Physiol Pharmacol 81:654–662

    Article  PubMed  CAS  Google Scholar 

  12. Wu SC, Wright CD, Cypher AL et al (2012) Nuclear targeting of the alpha 1A-adrenergic receptor is required for cardiac myocyte contractility. Circ Res 111:A128

    Google Scholar 

  13. Sugano K, Kansy M, Artursson P et al (2010) Coexistence of passive and carrier-mediated processes in drug transport. Nat Rev Drug Discov 9:597–614

    Article  PubMed  CAS  Google Scholar 

  14. Gray MO, Long CS, Kalinyak JE et al (1998) Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-β1 and endothelin-1 from fibroblasts. Cardiovasc Res 40:352–363

    Article  PubMed  CAS  Google Scholar 

  15. Singh VP, Le B, Bhat VB et al (2007) High-glucose-induced regulation of intracellular ANG II synthesis and nuclear redistribution in cardiac myocytes. Am J Physiol Heart Circ Physiol 293:H939–H948

    Article  PubMed  CAS  Google Scholar 

  16. Singh VP, Le B, Khode R et al (2008) Intracellular angiotensin II production in diabetic rats is correlated with cardiomyocyte apoptosis, oxidative stress, and cardiac fibrosis. Diabetes 57:3297–3306

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Singh VP, Baker KM, Kumar R (2008) Activation of the intracellular renin-angiotensin system in cardiac fibroblasts by high glucose: role in extracellular matrix production. Am J Physiol Heart Circ Physiol 294:H1675–H1684

    Article  PubMed  CAS  Google Scholar 

  18. Nies AT, Koepsell H, Damme K et al (2011) Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. Handb Exp Pharmacol 201:105–167

    Article  PubMed  CAS  Google Scholar 

  19. Hayer-Zillgen M, Bruss M, Bonisch H (2002) Expression and pharmacological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3. Br J Pharmacol 136:829–836

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Roth M, Obaidat A, Hagenbuch B (2012) OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol 165:1260–1287

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Grundemann D, Gorboulev V, Gambaryan S et al (1994) Drug excretion mediated by a new prototype of polyspecific transporter. Nature 372:549–552

    Article  PubMed  CAS  Google Scholar 

  22. Jonker JW, Wagenaar E, Mol CA et al (2001) Reduced hepatic uptake and intestinal excretion of organic cations in mice with a targeted disruption of the organic cation transporter 1 (Oct1 [Slc22a1]) gene. Mol Cell Biol 21:5471–5477

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Schweifer N, Barlow DP (1996) The Lx1 gene maps to mouse chromosome 17 and codes for a protein that is homologous to glucose and polyspecific transmembrane transporters. Mamm Genome 7:735–740

    Article  PubMed  CAS  Google Scholar 

  24. Gorboulev V, Ulzheimer JC, Akhoundova A et al (1997) Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol 16:871–881

    Article  PubMed  CAS  Google Scholar 

  25. Grundemann D, Koster S, Kiefer N et al (1998) Transport of monoamine transmitters by the organic cation transporter type 2, OCT2. J Biol Chem 273:30915–30920

    Article  PubMed  CAS  Google Scholar 

  26. Koepsell H, Lips K, Volk C (2007) Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 24:1227–1251

    Article  PubMed  CAS  Google Scholar 

  27. Zwart R, Verhaagh S, Buitelaar M et al (2001) Impaired activity of the extraneuronal monoamine transporter system known as uptake-2 in Orct3/Slc22a3-deficient mice. Mol Cell Biol 21:4188–4196

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. O’Connell TD, Ishizaka S, Nakamura A et al (2003) The alpha(1A/C)- and alpha(1B)-adrenergic receptors are required for physiological cardiac hypertrophy in the double-knockout mouse. J Clin Invest 111:1783–1791

    Article  PubMed  PubMed Central  Google Scholar 

  29. O’Connell TD, Rodrigo MC, Simpson PC (2007) Isolation and culture of adult mouse cardiac myocytes. Methods Mol Biol 357:271–296

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy D. O’Connell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dahl, E.F., Wright, C.D., O’Connell, T.D. (2015). Quantification of Catecholamine Uptake in Adult Cardiac Myocytes. In: Allen, B., Hébert, T. (eds) Nuclear G-Protein Coupled Receptors. Methods in Molecular Biology, vol 1234. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1755-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1755-6_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1754-9

  • Online ISBN: 978-1-4939-1755-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics