Skip to main content

Role of Glycosaminoglycans in Infectious Disease

  • Protocol
  • First Online:
Glycosaminoglycans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1229))

Abstract

Glycosaminoglycans (GAGs) have been shown to bind to a wide variety of microbial pathogens, including viruses, bacteria, parasites, and fungi in vitro. GAGs are thought to promote pathogenesis by facilitating pathogen attachment, invasion, or evasion of host defense mechanisms. However, the role of GAGs in infectious disease has not been extensively studied in vivo and therefore their pathophysiological significance and functions are largely unknown. Here we describe methods to directly investigate the role of GAGs in infections in vivo using mouse models of bacterial lung and corneal infection. The overall experimental strategy is to establish the importance and specificity of GAGs, define the essential structural features of GAGs, and identify a biological activity of GAGs that promotes pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lozano R, Naghavi M, Foreman K et al (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2095–2128

    Article  PubMed  Google Scholar 

  2. Wilhelmus KR (2002) Indecision about corticosteroids for bacterial keratitis: an evidence-based update. Ophthalmology 109:835–842

    Article  PubMed  Google Scholar 

  3. Bourcier T, Thomas F, Borderie V, Chaumeil C, Laroche L (2003) Bacterial keratitis: predisposing factors, clinical and microbiological review of 300 cases. Br J Ophthalmol 87:834–838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Limberg MB (1991) A review of bacterial keratitis and bacterial conjunctivitis. Am J Ophthalmol 112:2S–9S

    CAS  PubMed  Google Scholar 

  5. Jett BD, Gilmore MS (2002) Host-parasite interactions in Staphylococcus aureus keratitis. DNA Cell Biol 21:397–404

    Article  CAS  PubMed  Google Scholar 

  6. Busse WW, Lemanske RF Jr, Gern JE (2010) Role of viral respiratory infections in asthma and asthma exacerbations. Lancet 376:826–834

    Article  PubMed Central  PubMed  Google Scholar 

  7. Abusriwil H, Stockley RA (2007) The interaction of host and pathogen factors in chronic obstructive pulmonary disease exacerbations and their role in tissue damage. Proc Am Thorac Soc 4:611–617

    Article  CAS  PubMed  Google Scholar 

  8. Folkesson A, Jelsbak L, Yang L et al (2012) Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat Rev Microbiol 10:841–851

    Article  CAS  PubMed  Google Scholar 

  9. Angus DC, van der Poll T (2013) Severe sepsis and septic shock. N Engl J Med 369:840–851

    Article  CAS  PubMed  Google Scholar 

  10. Cover TL, Blaser MJ (2009) Helicobacter pylori in health and disease. Gastroenterology 136:1863–1873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Bzhalava D, Guan P, Franceschi S, Dillner J, Clifford G (2013) A systematic review of the prevalence of mucosal and cutaneous human papillomavirus types. Virology 445:224–231

    Article  CAS  PubMed  Google Scholar 

  12. Rehermann B (2013) Pathogenesis of chronic viral hepatitis: differential roles of T cells and NK cells. Nat Med 19:859–868

    Article  CAS  PubMed  Google Scholar 

  13. Rostand KS, Esko JD (1997) Microbial adherence to and invasion through proteoglycans. Infect Immun 65:1–8

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Bartlett AH, Park PW (2010) Proteoglycans in host-pathogen interactions: molecular mechanisms and therapeutic implications. Expert Rev Mol Med 12:e5

    Article  PubMed  Google Scholar 

  15. Spillmann D (2001) Heparan sulfate: anchor for viral intruders? Biochimie 83:811–817

    Article  CAS  PubMed  Google Scholar 

  16. Teng YH, Aquino RS, Park PW (2012) Molecular functions of syndecan-1 in disease. Matrix Biol 31:3–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Shukla D, Liu J, Blaiklock P et al (1999) A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99:13–22

    Article  CAS  PubMed  Google Scholar 

  18. Johnson KM, Kines RC, Roberts JN, Lowy DR, Schiller JT, Day PM (2009) Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus. J Virol 83:2067–2074

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Leistner CM, Gruen-Bernhard S, Glebe D (2008) Role of glycosaminoglycans for binding and infection of hepatitis B virus. Cell Microbiol 10:122–133

    CAS  PubMed  Google Scholar 

  20. Shi Q, Jiang J, Luo G (2013) Syndecan-1 serves as the major receptor for attachment of hepatitis C virus to the surfaces of hepatocytes. J Virol 87:6866–6875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Tan CW, Poh CL, Sam IC, Chan YF (2013) Enterovirus 71 uses cell surface heparan sulfate glycosaminoglycan as an attachment receptor. J Virol 87:611–620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Guzman-Murillo MA, Ruiz-Bustos E, Ho B, Ascencio F (2001) Involvement of the heparan sulphate-binding proteins of Helicobacter pylori in its adherence to HeLa S3 and Kato III cell lines. J Med Microbiol 50:320–329

    CAS  PubMed  Google Scholar 

  23. Bucior I, Mostov K, Engel JN (2010) Pseudomonas aeruginosa-mediated damage requires distinct receptors at the apical and basolateral surfaces of the polarized epithelium. Infect Immun 78:939–953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Isaacs RD (1994) Borrelia burgdorferi bind to epithelial proteoglycan. J Clin Invest 93:809–819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. O’Donnell CD, Tiwari V, Oh MJ, Shukla D (2006) A role for heparan sulfate 3-O-sulfotransferase isoform 2 in herpes simplex virus type 1 entry and spread. Virology 346:452–459

    Article  PubMed  Google Scholar 

  26. Freissler E, Meyer auf der Heyde A, David G, Meyer TF, Dehio C (2000) Syndecan-1 and syndecan-4 can mediate the invasion of OpaHSPG-expressing Neisseria gonorrhoeae into epithelial cells. Cell Microbiol 2:69–82

    Article  CAS  PubMed  Google Scholar 

  27. Alvarez-Dominguez C, Vasquez-Boland J, Carrasco-Marin E, Lopez-Mato P, Leyva-Cobian F (1997) Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect Immun 65:78–88

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Pethe K, Alonso S, Biet F et al (2001) The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature 412:190–194

    Article  CAS  PubMed  Google Scholar 

  29. Bishop JR, Crawford BE, Esko JD (2005) Cell surface heparan sulfate promotes replication of Toxoplasma gondii. Infect Immun 73:5395–5401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Schmidtchen A, Frick I, Björck L (2001) Dermatan sulfate is released by proteinases of common pathogenic bacteria and inactivates antibacterial alpha-defensin. Mol Microbiol 39:708–713

    Article  CAS  PubMed  Google Scholar 

  31. Park PW, Pier GB, Hinkes MT, Bernfield M (2001) Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence. Nature 411:98–102

    Article  CAS  PubMed  Google Scholar 

  32. Park PW, Foster TJ, Nishi E, Duncan SJ, Klagsbrun M, Chen Y (2004) Activation of syndecan-1 ectodomain shedding by Staphylococcus aureus alpha-toxin and beta-toxin. J Biol Chem 279:251–258

    Article  CAS  PubMed  Google Scholar 

  33. Chen Y, Bennett A, Hayashida A, Hollingshead S, Park PW (2005) Streptococcus pneumoniae sheds syndecan-1 ectodomains via ZmpC, a metalloproteinase virulence factor. J Biol Chem 282:159–167

    Article  Google Scholar 

  34. Hayashida A, Amano S, Park PW (2011) Syndecan-1 promotes Staphylococcus aureus corneal infection by counteracting neutrophil-mediated host defense. J Biol Chem 285:3288–3297

    Article  Google Scholar 

  35. Dubreuil JD, Giudice GD, Rappuoli R (2002) Helicobacter pylori interactions with host serum and extracellular matrix proteins: potential role in the infectious process. Microbiol Mol Biol Rev 66:617–629, table of contents

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Duensing TD, Wing JS, van Putten JPM (1999) Sulfated polysaccharide-directed recruitment of mammalian host proteins: a novel strategy in microbial pathogenesis. Infect Immun 67:4463–4468

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471

    Article  CAS  PubMed  Google Scholar 

  38. Lindahl U, Kusche-Gullberg M, Kjellén L (1998) Regulated diversity of heparan sulfate. J Biol Chem 273:24979–24982

    Article  CAS  PubMed  Google Scholar 

  39. Perrimon N, Bernfield M (2000) Specificities of heparan sulphate proteoglycans in developmental processes. Nature 404:725–728

    Article  CAS  PubMed  Google Scholar 

  40. Funderburgh JL (2000) Keratan sulfate: structure, biosynthesis, and function. Glycobiology 10:951–958

    Article  CAS  PubMed  Google Scholar 

  41. Mikami T, Kitagawa H (2013) Biosynthesis and function of chondroitin sulfate. Biochim Biophys Acta 1830:4719–4733

    Article  CAS  PubMed  Google Scholar 

  42. Whitelock JM, Iozzo RV (2005) Heparan sulfate: a complex polymer charged with biological activity. Chem Rev 105:2745–2764

    Article  CAS  PubMed  Google Scholar 

  43. Kobayashi F, Yamada S, Taguwa S et al (2012) Specific interaction of the envelope glycoproteins E1 and E2 with liver heparan sulfate involved in the tissue tropismatic infection by hepatitis C virus. Glycoconj J 29:211–220

    Article  CAS  PubMed  Google Scholar 

  44. Fechtner T, Stallmann S, Moelleken K, Meyer KL, Hegemann JH (2013) Characterization of the interaction between the chlamydial adhesin OmcB and the human host cell. J Bacteriol 195:5323–5333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. O’Callaghan D, Vergunst A (2010) Non-mammalian animal models to study infectious disease: worms or fly fishing? Curr Opin Microbiol 13:79–85

    Article  PubMed  Google Scholar 

  46. Dorer MS, Isberg RR (2006) Non-vertebrate hosts in the analysis of host-pathogen interactions. Microbes Infect 8:1637–1646

    Article  CAS  PubMed  Google Scholar 

  47. Ferrandon D, Imler JL, Hetru C, Hoffmann JA (2007) The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 7:862–874

    Article  CAS  PubMed  Google Scholar 

  48. Lee JS, Chien CB (2004) When sugars guide axons: insights from heparan sulphate proteoglycan mutants. Nat Rev Genet 5:923–935

    Article  CAS  PubMed  Google Scholar 

  49. Nakato H, Kimata K (2002) Heparan sulfate fine structure and specificity of proteoglycan functions. Biochim Biophys Acta 1573:312–318

    Article  CAS  PubMed  Google Scholar 

  50. Nishihara S (2010) Glycosyltransferases and transporters that contribute to proteoglycan synthesis in Drosophila: Identification and functional analyses using the heritable and inducible RNAi system. Methods Enzymol 480:323–351

    Article  CAS  PubMed  Google Scholar 

  51. Brown JR, Crawford BE, Esko JD (2007) Glycan antagonists and inhibitors: a fount for drug discovery. Crit Rev Biochem Mol Biol 42:481–515

    Article  CAS  PubMed  Google Scholar 

  52. Forsberg E, Pejler G, Ringvall M et al (1999) Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 400:773–776

    Article  CAS  PubMed  Google Scholar 

  53. Pallerla SR, Lawrence R, Lewejohann L et al (2008) Altered heparan sulfate structure in mice with deleted NDST3 gene function. J Biol Chem 283:16885–16894

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Sugaya N, Habuchi H, Nagai N, Ashikari-Hada S, Kimata K (2008) 6-O-sulfation of heparan sulfate differentially regulates various fibroblast growth factor-dependent signalings in culture. J Biol Chem 283:10366–10376

    Article  CAS  PubMed  Google Scholar 

  55. Shworak NW, HajMohammadi S, de Agostini AI, Rosenberg RD (2002) Mice deficient in heparan sulfate 3-O-sulfotransferase-1: normal hemostasis with unexpected perinatal phenotypes. Glycoconj J 19:355–361

    Article  CAS  PubMed  Google Scholar 

  56. Alexander CM, Reichsman F, Hinkes MT et al (2000) Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice. Nat Genet 25:329–332

    Article  CAS  PubMed  Google Scholar 

  57. Reizes O, Lincecum J, Wang Z et al (2001) Transgenic expression of syndecan-1 uncovers a physiological control of feeding behavior by syndecan-3. Cell 106:105–116

    Article  CAS  PubMed  Google Scholar 

  58. Echtermeyer F, Streit M, Wilcox-Adelman S et al (2001) Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. J Clin Invest 107:R9–R14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Jen YH, Musacchio M, Lander AD (2009) Glypican-1 controls brain size through regulation of fibroblast growth factor signaling in early neurogenesis. Neural Dev 4:33

    Article  PubMed Central  PubMed  Google Scholar 

  60. Cano-Gauci DF, Song HH, Yang H et al (1999) Glypican-3-deficient mice exhibit developmental overgrowth and some of the abnormalities typical of Simpson-Golabi-Behmel syndrome. J Cell Biol 146:255–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Allen NJ, Bennett ML, Foo LC et al (2012) Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486:410–414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Abrink M, Grujic M, Pejler G (2004) Serglycin is essential for maturation of mast cell secretory granule. J Biol Chem 279:40897–40905

    Article  PubMed  Google Scholar 

  63. Li Q, Olsen BR (2004) Increased angiogenic response in aortic explants of collagen XVIII/endostatin-null mice. Am J Pathol 165:415–424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Inatani M, Irie F, Plump AS, Tessier-Lavigne M, Yamaguchi Y (2003) Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Science 302:1044–1046

    Article  CAS  PubMed  Google Scholar 

  65. Wang L, Fuster M, Sriramarao P, Esko JD (2005) Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol 6:902–910

    Article  CAS  PubMed  Google Scholar 

  66. Stanford KI, Wang L, Castagnola J et al (2010) Heparan sulfate 2-O-sulfotransferase is required for triglyceride-rich lipoprotein clearance. J Biol Chem 285:286–294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Liu D, Shriver Z, Venkataraman G, El Shabrawi Y, Sasisekharan R (2002) Tumor cell surface heparan sulfate as cryptic promoters or inhibitors of tumor growth and metastasis. Proc Natl Acad Sci U S A 99:568–573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Avirutnan P, Zhang L, Punyadee N et al (2007) Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E. PLoS Pathog 3:1798–1812

    Article  CAS  Google Scholar 

  69. Schowalter RM, Pastrana DV, Buck CB (2011) Glycosaminoglycans and sialylated glycans sequentially facilitate Merkel cell polyomavirus infectious entry. PLoS Pathog 7:e1002161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Hu YP, Lin SY, Huang CY et al (2011) Synthesis of 3-O-sulfonated heparan sulfate octasaccharides that inhibit the herpes simplex virus type 1 host-cell interaction. Nat Chem 3:557–563

    Article  CAS  PubMed  Google Scholar 

  71. Bucior I, Pielage JF, Engel JN (2012) Pseudomonas aeruginosa pili and flagella mediate distinct binding and signaling events at the apical and basolateral surface of airway epithelium. PLoS Pathog 8:e1002616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Yabushita H, Noguchi Y, Habuchi H et al (2002) Effects of chemically modified heparin on Chlamydia trachomatis serovar L2 infection of eukaryotic cells in culture. Glycobiology 12:345–351

    Article  CAS  PubMed  Google Scholar 

  73. Love DC, Esko JD, Mosser DM (1993) A heparin-binding activity on Leishmania amastigotes which mediates adhesion to cellular proteoglycans. J Cell Biol 123:759–766

    Article  CAS  PubMed  Google Scholar 

  74. Oliveira FO Jr, Alves CR, Calvet CM et al (2008) Trypanosoma cruzi heparin-binding proteins and the nature of the host cell heparan sulfate-binding domain. Microb Pathog 44:329–338

    Article  PubMed  Google Scholar 

  75. Kaneider NC, Djanani A, Wiedermann CJ (2007) Heparan sulfate proteoglycan-involving immunomodulation by cathelicidin antimicrobial peptides LL-37 and PR-39. ScientificWorldJournal 7:1832–1838

    Article  CAS  PubMed  Google Scholar 

  76. Baranska-Rybak W, Sonesson A, Nowicki R, Schmidtchen A (2006) Glycosaminoglycans inhibit the antibacterial activity of LL-37 in biological fluids. J Antimicrob Chemother 57:260–265

    Article  CAS  PubMed  Google Scholar 

  77. Bergsson G, Reeves EP, McNally P et al (2009) LL-37 complexation with glycosaminoglycans in cystic fibrosis lungs inhibits antimicrobial activity, which can be restored by hypertonic saline. J Immunol 183:543–551

    Article  CAS  PubMed  Google Scholar 

  78. Wu H, Monroe DM, Church FC (1995) Characterization of the glycosaminoglycan-binding region of lactoferrin. Arch Biochem Biophys 317:85–92

    Article  CAS  PubMed  Google Scholar 

  79. Zou S, Magura CE, Hurley WL (1992) Heparin-binding properties of lactoferrin and lysozyme. Comp Biochem Physiol B 103:889–895

    CAS  PubMed  Google Scholar 

  80. Zanetti M (2005) The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol 7:179–196

    CAS  PubMed  Google Scholar 

  81. Travis SM, Anderson NN, Forsyth WR et al (2000) Bactericidal activity of mammalian cathelicidin-derived peptides. Infect Immun 68:2748–2755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Schmidtchen A, Frick IM, Andersson E, Tapper H, Bjorck L (2002) Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 46:157–168

    Article  CAS  PubMed  Google Scholar 

  83. Hume EB, Cole N, Khan S et al (2005) A Staphylococcus aureus mouse keratitis topical infection model: cytokine balance in different strains of mice. Immunol Cell Biol 83:294–300

    Article  CAS  PubMed  Google Scholar 

  84. Girgis DO, Sloop GD, Reed JM, O’Callaghan RJ (2004) Susceptibility of aged mice to Staphylococcus aureus keratitis. Curr Eye Res 29:269–275

    Article  PubMed  Google Scholar 

  85. Inoue Y, Nagasawa K (1976) Selective N-desulfation of heparin with dimethyl sulfoxide containing water or methanol. Carbohydr Res 46:87–95

    Article  CAS  PubMed  Google Scholar 

  86. Ishihara M, Kariya Y, Kikuchi H, Minamisawa T, Yoshida K (1997) Importance of 2-O-sulfate groups of uronate residues in heparin for activation of FGF-1 and FGF-2. J Biochem 121:345–349

    Article  CAS  PubMed  Google Scholar 

  87. Kariya Y, Kyogashima M, Suzuki K et al (2000) Preparation of completely 6-O-desulfated heparin and its ability to enhance activity of basic fibroblast growth factor. J Biol Chem 275:25949–25958

    Article  CAS  PubMed  Google Scholar 

  88. Zhang L, Lawrence R, Frazier BA, Esko JD (2006) CHO glycosylation mutants: proteoglycans. Methods Enzymol 416:205–221

    Article  CAS  PubMed  Google Scholar 

  89. Axelsson J, Xu D, Kang BN et al (2012) Inactivation of heparan sulfate 2-O-sulfotransferase accentuates neutrophil infiltration during acute inflammation in mice. Blood 120:1742–1751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Novick RP (2003) Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48:1429–1449

    Article  CAS  PubMed  Google Scholar 

  91. Porsche R, Brenner ZR (1999) Allergy to protamine sulfate. Heart Lung 28:418–428

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank past and current members of the Park laboratory for developing essential reagents and constantly refining the described procedures. This work was supported by NIH grants R01 EY021765 and R01 HL107472.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pyong Woo Park Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jinno, A., Park, P.W. (2015). Role of Glycosaminoglycans in Infectious Disease. In: Balagurunathan, K., Nakato, H., Desai, U. (eds) Glycosaminoglycans. Methods in Molecular Biology, vol 1229. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1714-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1714-3_45

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1713-6

  • Online ISBN: 978-1-4939-1714-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics