Skip to main content

Induction of Fully Stabilized Cortical Bone Defects to Study Intramembranous Bone Regeneration

  • Protocol
  • First Online:
Osteoporosis and Osteoarthritis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1226))

Abstract

Bone is a regenerative tissue with an innate ability to self-remodel in response to environmental stimuli and the need to repair damage. Rodent models of fracture healing, and in particular genetic mouse models, can be used to study the contributions of specific molecular switches to skeletal repair, as well as to recreate and exacerbate biological development and repair mechanisms in postnatal skeletons. Here, we describe methodology for producing fully stabilized, single-cortex defects in mouse femurs to study mechanisms of intramembranous bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Colnot C (2009) Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J Bone Miner Res 24:274–282

    Article  PubMed Central  PubMed  Google Scholar 

  2. Morgan EF, Salisbury Palomares KT, Gleason RE et al (2010) Correlations between local strains and tissue phenotypes in an experimental model of skeletal healing. J Biomech 43:2418–2424

    Article  PubMed Central  PubMed  Google Scholar 

  3. Le AX, Miclau T, Hu D et al (2001) Molecular aspects of healing in stabilized and non-stabilized fractures. J Orthop Res 19:78–84

    Article  CAS  PubMed  Google Scholar 

  4. Cullinane DM, Fredrick A, Eisenberg SR et al (2002) Induction of a neoarthrosis by precisely controlled motion in an experimental mid-femoral defect. J Orthop Res 20:579–586

    Article  PubMed  Google Scholar 

  5. Monfoulet L, Rabier B, Chassande O et al (2010) Drilled hole defects in mouse femur as models of intramembranous cortical and cancellous bone regeneration. Calcif Tissue Int 86:72–81

    Article  CAS  PubMed  Google Scholar 

  6. Yu YY, Bahney C, Hu D et al (2012) Creating rigidly stabilized fractures for assessing intramembranous ossification, distraction osteogenesis, or healing of critical sized defects. J Vis Exp 62, pii:3552

    Google Scholar 

  7. Isefuku S, Joyner CJ, Simpson AH (2000) A murine model of distraction osteogenesis. Bone 27:661–665

    Article  CAS  PubMed  Google Scholar 

  8. Yan Y, Tang D, Chen M et al (2009) Axin2 controls bone remodeling through the beta-catenin-BMP signaling pathway in adult mice. J Cell Sci 122:3566–3578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. McGee-Lawrence ME, Ryan ZC, Carpio LR et al (2013) Sclerostin deficient mice rapidly heal bone defects by activating beta-catenin and increasing intramembranous ossification. Biochem Biophys Res Commun 441:886–890

    Article  CAS  PubMed  Google Scholar 

  10. Cunliffe-Beamer TL (1993) Applying principles of aseptic surgery to rodents. AWIC Newslett 4:3–6

    Google Scholar 

  11. Bouxsein ML, Boyd SK, Christiansen BA et al (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25:1468–1486

    Article  PubMed  Google Scholar 

  12. An YH, Moreira PL, Kang QK et al (2003) Principles of embedding and common protocols. In: An YH, Martin KL (eds) Handbook of histology methods for bone and cartilage. Humana Press, Totowa, NJ, pp 185–206

    Chapter  Google Scholar 

  13. Ries WL (2003) Techniques for sectioning undecalcified bone tissue using microtomes. In: An YH, Martin KL (eds) Handbook of histology methods for bone and cartilage. Humana Press, Totowa, NJ, pp 221–232

    Google Scholar 

  14. Dempster DW, Compston JE, Drezner MK et al (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28:2–17

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The NIH (R01 DE020194, T32 AR056950, F32 AR60140) and the Mayo Clinic Center for Regenerative Medicine supported this work. The authors thank Keith Condon (Indiana University School of Medicine) for the Von Kossa/MacNeal’s tetrachrome staining protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meghan E. McGee-Lawrence Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media. New York

About this protocol

Cite this protocol

McGee-Lawrence, M.E., Razidlo, D.F. (2015). Induction of Fully Stabilized Cortical Bone Defects to Study Intramembranous Bone Regeneration. In: Westendorf, J., van Wijnen, A. (eds) Osteoporosis and Osteoarthritis. Methods in Molecular Biology, vol 1226. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1619-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1619-1_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1618-4

  • Online ISBN: 978-1-4939-1619-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics