Skip to main content

Application of Fluorescent in Situ Hybridization (FISH) in Surgical and Cytologic Specimens (Solid Tumors, Hematopoietic Tumors, Urine, Bile Duct Brushing and Bronchoscopy)

  • Chapter
  • First Online:
  • 4594 Accesses

Abstract

Florescence in situ hybridization (FISH) using chromosome-specific probes has become an important cytogenetic tool in the evaluation of many congenital disorders, hematologic malignancies, some solid tumors and cytologic neoplasm. Due to its interphase analysis, fast, high sensitivity and specificity, both fresh and fixed specimens, it becomes a very informative and rapid adjunct to standard karyotyping.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Levsky JM, Singer RH. Fluorescence in situ hybridization: past, present and future. J Cell Sci. 2003;116(Pt 14)):2833–8.

    Article  CAS  PubMed  Google Scholar 

  2. Liehr T, Claussen U. Current developments in human molecular cytogenetics techniques. Curr Mol Med. 2002;2(3):283–97.

    Article  CAS  PubMed  Google Scholar 

  3. Ventura RA, Martin-Subero JI, Jones M, et al. FISH analysis for the detection of lymphoma-associated chromosomal abnormalities in routine-paraffin-embedded tissue. J Mol Diagn. 2006;8(2):141–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Halling KC, Kipp BR. Bladder cancer detection using FISH (UroVysion assay). Adv Anat Pathol. 2008;15(5):279–86.

    Article  CAS  PubMed  Google Scholar 

  5. Cavazzini F, Ciccone M, Negrini M, et al. Clinicobiologic importance of cytogenetic lesions in chronic lymphocytic leukemia. Expert Rev Hematol. 2009;2(3):305–14.

    Article  CAS  PubMed  Google Scholar 

  6. Sreekantaiah C. FISH panels for hematologic malignancies. Cytogenet Genome Res. 2007;118(2):284–96.

    Article  CAS  PubMed  Google Scholar 

  7. Stewart AK, Bergsagel PL, Greipp PR, et al. A practical guide to defining high-risk myeloma for clinical trials, patient counseling and choice of therapy. Leukemia. 2007;21(3):529–34.

    Article  CAS  PubMed  Google Scholar 

  8. Dewald GW, Wyatt WA, Juneau AL, et al. Highly sensitive fluorescence in situ hybridization method to detect double BCR/ABL fusion and monitor response to therapy in chronic myeloid leukemia. Blood. 1998;91(9):3357–65.

    CAS  PubMed  Google Scholar 

  9. Wolff DJ, Bagg A, Cooley LD, et al. Guidance for fluorescence in situ hybridization testing in hematologic disorders. J Mol Diagn. 2007;9(2):134–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Smoley SA, Brockman SR, Paternoster SF, Meyer RG, Dewald GW. A novel tricolor, dual-fusion fluorescence in situ hybridization method to detect BCR/ABL fusion in cells with t(9;22)(q34;q11.2) associated with deletion of DNA on the derivative chromosome 9 in chronic myelocytic leukemia. Cancer Genet Cytogenet. 2004;148(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  11. Sinclair PB, Nacheva EP, Leversha M, et al. Large deletions at the t(9;22) breakpoint are common and may identify a poor-prognosis subgroup of patients with chronic myeloid leukemia. Blood. 2000;95(3):738–4.

    CAS  PubMed  Google Scholar 

  12. Niitsu N, Okamoto M, Nakamura N, et al. Prognostic impact of chromosomal alteration of 3q27 on nodal B-cell lymphoma: correlation with histology, immunophenotype, karyotype, and clinical outcome in 329 consecutive patients. Leuk Res. 2007;31(9):1191–7.

    Article  CAS  PubMed  Google Scholar 

  13. Espinet B, Bellosillo B, Gregori E, et al. Fish is the best method to detect BCL2/IgH translocation in follicular lymphoma at diagnosis. A comparative study with conventional cytogenetics, Fish and PCR (Biomed-2 Primers) techniques [American Society of Hematology abstract 1377]. Blood. 2004;104(11):1377.

    Google Scholar 

  14. Levy MJ, Clain JE, Clayton A, et al. Preliminary experience comparing routine cytology results with the composite results of digital image analysis and fluorescence in situ hybridization in patients undergoing EUS-guided FNA. Gastrointest Endosc. 2007;66(3):483–90.

    Article  PubMed  Google Scholar 

  15. Barr Fritcher EG, Kipp BR, Slezak JM, et al. Correlating routine cytology, quantitative nuclear morphometry by digital image analysis, and genetic alterations by fluorescence in situ hybridization to assess the sensitivity of cytology for detecting pancreatobiliary tract malignancy. Am J Clin Pathol. 2007;128(2):272–9.

    Article  PubMed  Google Scholar 

  16. Fritcher EG, Kipp BR, Halling KC, et al. A multivariable model using advanced cytologic methods for the evaluation of indeterminate pancreatobiliary strictures. Gastroenterology. 2009;136(7):2180–6.

    Article  PubMed  Google Scholar 

  17. Halling KC, Rickman OB, Kipp BR, Harwood AR, Doerr CH, Jett JR. A comparison of cytology and fluorescence in situ hybridization for the detection of lung cancer in bronchoscopic specimens. Chest. 2006;130(3):694–701.

    Article  PubMed  Google Scholar 

  18. Kipp BR, Tanasescu M, Else TA, et al. Quantitative fluorescence in situ hybridization and its ability to predict bladder cancer recurrence and progression to muscle-invasive bladder cancer. J Mol Diagn. 2009;11(2):148–54.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Halling KC, King W, Sokolova IA, et al. A comparison of cytology and fluorescence in situ hybridization for the detection of urothelial carcinoma. J Urol. 2000;164(5):1768–75.

    Article  CAS  PubMed  Google Scholar 

  20. Halling KC. Vysis UroVysion for the detection of urothelial carcinoma. Expert Rev Mol Diagn. 2003;3(4):507–19.

    Article  PubMed  Google Scholar 

  21. Anderson J, Gordon T, McManus A, et al. Detection of the PAX3-FKHR fusion gene in paediatric rhabdomyosarcoma: a reproducible predictor of outcome? Br J Cancer. 2001;85(6):831–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Mehra S, de la Roza G, Tull J, Shrimpton A, Valente A, Zhang S. Detection of FOXO1 (FKHR) gene break-apart by fluorescence in situ hybridization in formalin-fixed, paraffin-embedded alveolar rhabdomyosarcomas and its clinicopathologic correlation. Diagn Mol Pathol. 2008;17(1):14–20.

    CAS  PubMed  Google Scholar 

  23. Tanas MR, Goldblum JR. Fluorescence in situ hybridization in the diagnosis of soft tissue neoplasms: a review. Adv Anat Pathol. 2009;16(6):383–91.

    Article  CAS  PubMed  Google Scholar 

  24. Avet-Loiseau H. FISH analysis at diagnosis in acute lymphoblastic leukemia. Leuk Lymphoma. 1999;33(5–6):441–9.

    CAS  PubMed  Google Scholar 

  25. Harrison CJ. The detection and significance of chromosomal abnormalities in childhood acute lymphoblastic leukaemia. Blood Rev. 2001;15(1):49–59.

    Article  CAS  PubMed  Google Scholar 

  26. Martelli MP, Sozzi G, Hernandez L, et al. EML4-ALK rearrangement in non-small cell lung cancer and non-tumor lung tissues. Am J Pathol. 2009;174(2):661–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Camidge DR, Kono SA, Flacco A, et al. Optimizing the detection of lung cancer patients harboring anaplastic lymphoma kinase (ALK) gene rearrangements potentially suitable for ALK inhibitor treatment. Clin Cancer Res. 2010;16(22):5581–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Thunnissen E, Bubendorf L, Dietel M. EML4-ALK testing in non-small cell carcinomas of the lung: a review with recommendations. Virchows Arch. 2012;461(3):245–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Lindeman N, Cagle PT, Beasley MB, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. Arch Pathol Lab Med. 2013;137(6):828–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Sasaki T, Rodig SJ, Chirieac L, Janne PA. The biology and treatment of EML4-ALK non-small cell lung cancer. Eur J Cancer. 2010;46(10):1773–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Cornejo KM, Kandil D, Khan A, Cosar EF. Theranostic and molecular classification of breast cancer. Arch Pathol Lab Med. 2014;138(1):44–56.

    Article  PubMed  Google Scholar 

  32. Rüschoff J, Hanna W, Bilous M, et al. HER2 testing in gastric cancer: a practical approach. Mod Pathol. 2012;25(5):637–50.

    Article  PubMed  Google Scholar 

  33. Matthiesen SH, Hansen CM. Fast and non-toxic in situ hybridization without blocking of repetitive sequences. PloS One. 2012;7(7):e40675.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. LeGallo RD, Stelow EB, Ramirez NC, Atkins KA. Diagnosis of hydatidiform moles using p57 immunohistochemistry and HER2 FISH. Am J Clin Pathol. 2008;129(5):749–55.

    Article  PubMed  Google Scholar 

  35. Ross JS, Fletcher JA, Linette GP, et al. The Her-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy. Oncologist. 2003;8(4):307–25.

    Article  CAS  PubMed  Google Scholar 

  36. Yaziji H, Goldstein LC, Barry TS, et al. HER-2 testing in breast cancer using parallel tissue-based methods. JAMA. 2004;291(16):1972–7.

    Article  CAS  PubMed  Google Scholar 

  37. Varshney D, Zhou YY, Geller SA, Alsabeh R. Determination of HER-2 status and chromosome 17 polysomy in breast carcinomas comparing HercepTest and PathVysion FISH Assay. Am J Clin Pathol. 2004;121(1):70–7.

    Article  CAS  PubMed  Google Scholar 

  38. Lal P, Salazar PA, Ladanyi M, Chen B. Impact of polysomy 17 on HER-2/neu immunohistochemistry in breast carcinomas without HER-2/neu gene amplification. J Mol Diagn. 2003;5(3):155–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Gruver AM, Peerwani Z, Tubbs RR. Out of the darkness and into the light: bright field in situ hybridisation for delineation of ERBB2 (HER2) status in breast carcinoma. J Clin Pathol. 2010;63(3):210–9.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Arnould L, Roger P, Macgrogan G, et al. Accuracy of HER2 status determination on breast core-needle biopsies (immunohistochemistry, FISH, CISH and SISH vs FISH). Mod Pathol. 2012;25(5).

    Google Scholar 

  41. Wolff AC, Hammond ME, Hicks DG, American Society of Clinical Oncology, College of American Pathologists, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch Pathol Lab Med. 2014;138(2):241–56.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

Special thanks for Jenny Pettengill, CT (ASCP), Cytotechnologist at Mayo Clinic, providing UroVysion pictures and Neogenomics providing some of the FISH pictures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yin MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yin, H., Paynton, B.V., Zelonis, M.K., Snyder, D., Kip, N.S. (2015). Application of Fluorescent in Situ Hybridization (FISH) in Surgical and Cytologic Specimens (Solid Tumors, Hematopoietic Tumors, Urine, Bile Duct Brushing and Bronchoscopy). In: Lin, F., Prichard, J. (eds) Handbook of Practical Immunohistochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1578-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1578-1_35

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1577-4

  • Online ISBN: 978-1-4939-1578-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics