Skip to main content

Probing Protein Targeting to Plasmodesmata Using Fluorescence Recovery After Photo-Bleaching

  • Protocol
  • First Online:
  • 3435 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1217))

Abstract

Fluorescence recovery after photo-bleaching (FRAP) involves the irreversible bleaching of a fluorescent protein within a specific area of the cell using a high-intensity laser. The recovery of fluorescence represents the movement of new protein into this area and can therefore be used to investigate factors involved in this movement. Here we describe a FRAP method to investigate the effect of a range of pharmacological agents on the targeting of Tobacco mosaic virus movement protein to plasmodesmata.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Atkins D, Hull R, Wells B et al (1991) The Tobacco mosaic virus 30K movement protein in transgenic tobacco plants is localized to plasmodesmata. J Gen Virol 72:209–211

    Article  PubMed  CAS  Google Scholar 

  2. Ding B, Haudenshield JS, Hull RJ et al (1992) Secondary plasmodesmata are specific sites of localization of the Tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell 4:915–928

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Itaya A, Hickman H, Bao Y et al (1997) Cell-to-cell trafficking of Cucumber mosaic virus movement protein: green fluorescent protein fusion produced by biolistic gene bombardment in tobacco. Plant J 12:1223–1230

    Article  CAS  Google Scholar 

  4. Itaya A, Woo Y-M, Masuta C et al (1998) Developmental regulation of intercellular protein trafficking through plasmodesmata in tobacco leaf epidermis. Plant Physiol 118:373–385

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Roberts IM, Boevink P, Roberts AG et al (2001) Dynamic changes in the frequency and architecture of plasmodesmata during the sink-source transition in tobacco leaves. Protoplasma 218:31–44

    Article  PubMed  CAS  Google Scholar 

  6. Liu C, Nelson RS (2013) The cell biology of Tobacco mosaic virus replication and movement. Front Plant Sci 4:12. doi:10.3389/fpls.2013.00012

    PubMed  PubMed Central  Google Scholar 

  7. Wright KM, Wood NT, Roberts AG et al (2007) Targeting of TMV movement protein to plasmodesmata requires the actin/ER network; evidence from FRAP. Traffic 8:21–31

    Article  PubMed  CAS  Google Scholar 

  8. Brandizzi F, Snapp EL, Roberts AG et al (2002) Membrane protein transport between the endoplasmic reticulum and the Golgi in tobacco leaves is energy dependent but cytoskeleton independent: evidence from selective photobleaching. Plant Cell 14:1293–1309

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Nehls S, Snapp EL, Cole NB et al (2000) Dynamics and retention of misfolded proteins in native ER membranes. Nat Cell Biol 2:288–295

    Article  PubMed  CAS  Google Scholar 

  10. Runions J, Brach T, Kuhner S et al (2006) Photoactivation of GFP reveals protein dynamics within the endoplasmic reticulum membrane. J Exp Bot 57:43–50

    Article  PubMed  CAS  Google Scholar 

  11. Peña EJ, Heinlein M (2012) RNA transport during TMV cell-to-cell movement. Front Plant Sci 3:193. doi:10.3389/fpls.2012.00193

    Article  PubMed  PubMed Central  Google Scholar 

  12. Niehl A, Peña EJ, Amari K et al (2013) Microtubules in viral replication and transport. Plant J 75:290–308

    Article  PubMed  CAS  Google Scholar 

  13. Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10:937–946

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Gillespie T, Boevink P, Haupt S et al (2002) Functional analysis of a DNA-shuffled movement protein reveals that microtubules are dispensable for the cell-to-cell movement of Tobacco mosaic virus. Plant Cell 14:1207–1222

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Latijnhouwers M, Hawes C, Carvalho C et al (2005) An Arabidopsis GRIP domain protein locates to the trans-Golgi and binds the small GTPase ARL1. Plant J 44:459–470

    Article  PubMed  CAS  Google Scholar 

  16. Sheahan MB, Staiger CJ, Rose RJ et al (2004) A green fluorescent protein fusion to actin-binding domain 2 of Arabidopsis fimbrin highlights new features of a dynamic actin cytoskeleton in live plant cells. Plant Physiol 136:3968–3978

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Genstat (2012) Genstat for Windows release 15.1. VSM International Ltd, Hemel Hempstead, Hertfordshire

    Google Scholar 

  18. Lyalin OO, Lukoyanova SA (1993) Effects of kinetin and ABA on parameters of root exudation. Fiziol Rast 40:368–374

    Google Scholar 

  19. Goodin MM, Zaitlin D, Naidu RA et al (2008) Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. Mol Plant Microbe Interact 21:1015–1026

    Article  PubMed  CAS  Google Scholar 

  20. Sleat DE, Turner PC, Finch JT et al (1986) Packaging of recombinant RNA molecules into pseudovirus particles directed by the origin-of-assembly sequence from tobacco mosaic virus RNA. Virology 155:299–308

    Article  PubMed  CAS  Google Scholar 

  21. Boyko V, Ferralli J, Heinlein M (2000) Cell-to-cell movement of TMV RNA is temperature-dependent and corresponds to the association of movement protein with microtubules. Plant J 22:315–325

    Article  PubMed  CAS  Google Scholar 

  22. Vidali L, Rounds CM, Hepler PK et al (2009) Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells. PLoS One 4:e5744. doi:10.1371/journal.pone.0005744

    Article  PubMed  PubMed Central  Google Scholar 

  23. Goodbody K, Lloyd CW (1990) Actin filaments line up across Tradescantia epidermal cells, anticipating wound-induced division planes. Protoplasma 157:92–101

    Article  Google Scholar 

  24. Wasteneys GO, Willingale-Theune J, Menzel D (1997) Freeze shattering: a simple and effective method for permeabilizing higher plant cell walls. J Microsc 188:51–61

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Scottish Government Rural and Environmental Science and Analytical Services Division (RESAS). We thank D.A. Elston and P.J. Wright for critical review and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn M. Wright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wright, K.M., MacKenzie, K.M. (2015). Probing Protein Targeting to Plasmodesmata Using Fluorescence Recovery After Photo-Bleaching. In: Heinlein, M. (eds) Plasmodesmata. Methods in Molecular Biology, vol 1217. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1523-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1523-1_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1522-4

  • Online ISBN: 978-1-4939-1523-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics