Skip to main content

Symmetric Protein Architecture in Protein Design: Top-Down Symmetric Deconstruction

  • Protocol
  • First Online:
Book cover Protein Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1216))

Abstract

Top-down symmetric deconstruction (TDSD) is a joint experimental and computational approach to generate a highly stable, functionally benign protein scaffold for intended application in subsequent functional design studies. By focusing on symmetric protein folds, TDSD can leverage the dramatic reduction in sequence space achieved by applying a primary structure symmetric constraint to the design process. Fundamentally, TDSD is an iterative symmetrization process, in which the goal is to maintain or improve properties of thermodynamic stability and folding cooperativity inherent to a starting sequence (the “proxy”). As such, TDSD does not attempt to solve the inverse protein folding problem directly, which is computationally intractable. The present chapter will take the reader through all of the primary steps of TDSD—selecting a proxy, identifying potential mutations, establishing a stability/folding cooperativity screen—relying heavily on a successful TDSD solution for the common β-trefoil fold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Longo LMB, Blaber M (2012) Protein design—a vast unexploited resource. J Protein Proteonomics 3:78–83

    Google Scholar 

  2. Yue K, Dill KA (1992) Inverse protein folding problem: designing polymer sequences. Proc Natl Acad Sci U S A 89:4163–4167

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Koga N, Tatsumi-Koga R, Liu G, Xiao R, Acton TB, Montelione GT et al (2012) Principles for designing ideal protein structures. Nature 491:222–227

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Blaber M, Lee J (2012) Designing proteins from simple motifs: opportunities in top-down symmetric deconstruction. Curr Opin Struct Biol 22:442–450

    Article  PubMed  CAS  Google Scholar 

  5. Lee J, Blaber SI, Dubey VK, Blaber M (2011) A polypeptide “building block” for the ß-trefoil fold identified by “top-down symmetric deconstruction”. J Mol Biol 407:744–763

    Article  PubMed  CAS  Google Scholar 

  6. Fleishman SJ, Whitehead TA, Ekiert DC, Dreyfus C, Corn JE, Strauch E-M et al (2011) Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. Science 332:816–821

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Jung J, Lee B (2001) Circularly permuted proteins in the protein structure database. Protein Sci 10:1881–1886

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Levy Y, Cho SS, Shen T, Onuchic JN, Wolynes PG (2005) Symmetry and frustration in protein energy landscapes: a near degeneracy resolves the Rop dimer-folding mystery. Proc Natl Acad Sci U S A 102:2373–2378

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Seitz T, Bocola M, Claren J, Sterner R (2007) Stabilization of a (beta-alpha)8-barrel protein designed from identical half barrels. J Mol Biol 372:114–129

    Article  PubMed  CAS  Google Scholar 

  10. Fortenberry C, Bowman EA, Proffitt W, Dorr B, Combs S, Harp J et al (2011) Exploring symmetry as an avenue to the computational design of large protein domains. J Am Chem Soc 133:18026–18029

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Yadid I, Tawfik DS (2011) Functional β-propeller lectins by tandem duplications of repetitive units. Protein Eng Des Sel 24:185–195

    Article  PubMed  CAS  Google Scholar 

  12. Lee J, Blaber M (2011) Experimental support for the evolution of symmetric protein architecture from a simple peptide motif. Proc Natl Acad Sci U S A 108:126–130

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Brych SR, Dubey VK, Bienkieicz E, Lee J, Logan TM, Blaber M (2004) Symmetric primary and tertiary structure mutations within a symmetric superfold: a solution, not a constraint, to achieve a foldable polypeptide. J Mol Biol 344:769–780

    Article  PubMed  CAS  Google Scholar 

  14. Broom A, Doxey AC, Lobsanov YD, Berthin LG, Rose DR, Howell PL et al (2012) Modular evolution and the origins of symmetry: reconstruction of a three-fold symmetric globular protein. Structure 20:161–171

    Article  PubMed  CAS  Google Scholar 

  15. Fukuchi S, Nishikawa K (2001) Protein surface amino acid compositions distinctively differ between thermophilic and mesophilic bacteria. J Mol Biol 309:835–843

    Article  PubMed  CAS  Google Scholar 

  16. Kumar S, Tsai CJ, Nussinov R (2000) Factors enhancing protein thermostability. Protein Eng 13:179–191

    Article  PubMed  CAS  Google Scholar 

  17. Fukuchi S, Yoshimune K, Wakayama M, Moriguchi M, Nishikawa K (2003) Unique amino acid composition of proteins in halophilic bacteria. J Mol Biol 327:347–357

    Article  PubMed  CAS  Google Scholar 

  18. Oren A, Larimer F, Richardson P, Lapidus A, Csonka LN (2005) How to be moderately halophilic with broad salt tolerance: clues from the genome of Chromohalobacter salexigens. Extremophiles 9:275–279

    Article  PubMed  CAS  Google Scholar 

  19. Kennedy SP, Ng WV, Salzberg SL, Hood L, DasSarma S (2001) Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence. Genome Res 11:1641–1650

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Schreiber G, Buckle AM, Fersht AR (1994) Stability and function: two constraints in the evolution of barstar and other proteins. Structure 2:945–951

    Article  PubMed  CAS  Google Scholar 

  21. Shoichet BK, Baase WA, Kuroki R, Matthews BW (1995) A relationship between protein stability and protein function. Proc Natl Acad Sci U S A 92:452–456

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Longo L, Lee J, Blaber M (2012) Experimental support for the foldability-function tradeoff hypothesis: segregation of the folding nucleus and functional regions in FGF-1. Protein Sci 21:1911–1920

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Capraro DT, Gosavi S, Roy M, Onuchic JN, Jennings PA (2012) Folding circular permutants of IL-1beta: route selection driven by functional frustration. PLoS One 7:e38512

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Gosavi S, Chavez LL, Jennings PA, Onuchic JN (2006) Topological frustration and the folding of interleukin-1β. J Mol Biol 357: 986–996

    Article  PubMed  CAS  Google Scholar 

  25. Gosavi S, Whitford PC, Jennings PA, Onuchic JN (2008) Extracting function from a beta-trefoil folding motif. Proc Natl Acad Sci U S A 105:10384–10389

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Serrano L, Matouschek A, Fersht AR (1992) The folding of an enzyme. III. Structure of the transition state for unfolding of barnase analysed by a protein engineering procedure. J Mol Biol 224:805–818

    Article  PubMed  CAS  Google Scholar 

  27. Lowe AR, Itzhaki LS (2007) Rational redesign of the folding pathway of a modular protein. Proc Natl Acad Sci U S A 104(8):2679–2684

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Liu C, Gaspar JA, Wong HJ, Meiering EM (2002) Conserved and nonconserved features of the folding pathway of hisactophilin, a β-trefoil protein. Protein Sci 11:669–679

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Richter M, Bosnali M, Carstensen L, Seitz T, Durchschlag H, Blanquart S et al (2010) Computational and experimental evidence for the evolution of a (βα)8-barrel protein from an ancestral quarter-barrel stabilized by disulfide bonds. J Mol Biol 398:763–773

    Article  PubMed  CAS  Google Scholar 

  30. Carstensen L, Sperl JM, Bocola M, List F, Schmid FX, Sterner R (2012) Conservation of the folding mechanism between designed primordial (βα)8-barrel proteins and their modern descendant. J Am Chem Soc 134:12786–12791

    Article  PubMed  CAS  Google Scholar 

  31. Yadid I, Tawfik DS (2007) Reconstruction of functional β-propeller lectins via homo-oligomeric assembly of shorter fragments. J Mol Biol 365:10–17

    Article  PubMed  CAS  Google Scholar 

  32. Pace CN, Trevino S, Prabhakaran E, Scholtz JM (2004) Protein structure, stability and solubility in water and other solvents. Philos Trans R Soc Lond B Biol Sci 359:1225–1234, discussion 1234–1225

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Barrick D (2009) What have we learned from the studies of two-state folders, and what are the unanswered questions about two-state protein folding? Phys Biol 6:015001

    Article  PubMed  Google Scholar 

  34. Lee J, Blaber M (2009) The interaction between thermostability and buried free cysteines in regulating the functional half-life of fibroblast growth factor-1. J Mol Biol 393: 113–127

    Article  PubMed  CAS  Google Scholar 

  35. Blaber SI, Culajay JF, Khurana A, Blaber M (1999) Reversible thermal denaturation of human FGF-1 induced by low concentrations of guanidine hydrochloride. Biophys J 77:470–477

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Copeland RA, Halfpenny AJ, Williams RW, Thompson KC, Herber WK et al (1991) The structure of human acidic fibroblast growth factor and its interaction with heparin. Arch Biochem Biophys 289:53–61

    Article  PubMed  CAS  Google Scholar 

  37. Larson SM, Ruczinski I, Davidson AR, Baker D, Plaxco KW (2002) Residues participating in the protein folding nucleus do not exhibit preferential evolutionary conservation. J Mol Biol 316:225–233

    Article  PubMed  CAS  Google Scholar 

  38. Nickson AA, Clarke J (2010) What lessons can be learned from studying the folding of homologous proteins? Methods 52:38–50

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Beadle BM, Shoichet BK (2002) Structural basis of stability–function tradeoffs in enzymes. J Mol Biol 321:285–296

    Article  PubMed  CAS  Google Scholar 

  40. Rubini M, Lepthie S, Golbik R, Budisa N (2006) Aminotryptophan-containing barstar: structure-function tradeoff in protein design and engineering with an expanded genetic code. Biochim Biophys Acta 1764:1147–1158

    Article  PubMed  CAS  Google Scholar 

  41. Steipe B, Schiller B, Pluckthun A, Steinbacher S (1994) Sequence statistics reliably predict stabilizing mutations in a protein domain. J Mol Biol 240:188–192

    Article  PubMed  CAS  Google Scholar 

  42. Lehmann M, Kostrewa D, Wyss M, Brugger R, D’Arcy A, Pasamontes L et al (2000) From DNA sequence to improved functionality: using protein sequence comparisons to rapidly design a thermostable consensus phytase. Protein Eng 13:49–57

    Article  PubMed  CAS  Google Scholar 

  43. Sullivan BJ, Nguyen T, Durani V, Mathur D, Rojas S, Thomas M et al (2012) Stabilizing proteins from sequence statistics: the interplay of conservation and correlation in triosephosphate isomerase stability. J Mol Biol 420:384–399

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Lee J, Dubey VK, Longo LM, Blaber M (2008) A logical OR redundancy with the Asx-Pro-Asx-Gly type I β-turn motif. J Mol Biol 377:1251–1264

    Article  PubMed  CAS  Google Scholar 

  45. Karpusas M, Baase WA, Matsumura M, Matthews BW (1989) Hydrophobic packing in T4 lysozyme probed by cavity-filling mutants. Proc Natl Acad Sci U S A 86:8237–8241

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Lassalle MW, Yamada H, Morii H, Ogata K, Sarai A, Akasaka K (2001) Filling a cavity dramatically increases pressure stability of the c-Myb R2 subdomain. Proteins 45:96–101

    Article  PubMed  CAS  Google Scholar 

  47. Bernett MJ, Somasundaram T, Blaber M (2004) An atomic resolution structure for human fibroblast growth factor 1. Proteins 57:626–634

    Article  PubMed  CAS  Google Scholar 

  48. Brych SR, Blaber SI, Logan TM, Blaber M (2001) Structure and stability effects of mutations designed to increase the primary sequence symmetry within the core region of a β-trefoil. Protein Sci 10:2587–2599

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Ponder JW, Richards FM (1987) Tertiary templates for proteins—use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol 193: 775–791

    Article  PubMed  CAS  Google Scholar 

  50. Lesk AM, Branden CL, Chothia C (1989) Structural principles of alpha/beta barrel proteins: the packing of the interior of the sheet. Proteins 5:139–148

    Article  PubMed  CAS  Google Scholar 

  51. Sandberg WS, Terwilliger TC (1991) Energetics of repacking a protein interior. Proc Natl Acad Sci U S A 88:1706–1710

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Ross SA, Sarisky CA, Su A, Mayo SL (2001) Designed protein g core variants fold to native-like structures: sequence selection by orbit tolerates variation in backbone specification. Protein Sci 10:450–454

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Zou J, Saven JG (2000) Statistical theory of combinatorial libraries of folding proteins: energetic discrimination of a target structure. J Mol Biol 296:281–294

    Article  PubMed  CAS  Google Scholar 

  54. Dantas G, Corrent C, Reichow SL, Havranek JJ, Eletr ZM, Isern NG et al (2007) High-resolution structural and thermodynamic analysis of extreme stabilization of human procarboxypeptidase by computational protein design. J Mol Biol 366:1209–1221

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Pokala N, Handel TM (2004) Energy functions for protein design i: efficient and accurate continuum electrostatics and solvation. Protein Sci 13:925–936

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Wisz MS, Hellinga HW (2003) An empirical model for electrostatic interactions in proteins incorporating multiple geometry-dependent dielectric constants. Proteins 51:360–377

    Article  PubMed  CAS  Google Scholar 

  57. Jain T, Cerutti DS, McCammon JA (2006) Configurational-bias sampling technique for predicting side-chain conformations in proteins. Protein Sci 15:2029–2039

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Shaw KL, Scholtz JM, Pace CN, Grimsley GR (2009) Determining the conformational stability of a protein using urea denaturation curves. Methods Mol Biol 490:41–55

    Article  PubMed  CAS  Google Scholar 

  59. Myers JK, Pace CN, Scholtz JM (1995) Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci 4: 2138–2148

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Sanchez IE, Kiefhaber T (2003) Evidence of sequential barriers and obligatory intermediates in apparent two-state protein folding. J Mol Biol 325:367–376

    Article  PubMed  CAS  Google Scholar 

  61. Sanchez IE, Kiefhaber T (2003) Hammond behavior versus ground state effects in protein folding: evidence for narrow free energy barriers and residual structure in unfolded states. J Mol Biol 327:867–884

    Article  PubMed  CAS  Google Scholar 

  62. Aksel T, Majumdar A, Barrick D (2011) The contribution of entropy, enthalpy, and hydrophobic desolvation to cooperativity in repeat-protein folding. Structure 19:349–360

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Chowdhry BZ, Cole SC (1989) Differential scanning calorimetry: applications in biotechnology. Trends Biotechnol 7:11–18

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Blaber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Longo, L.M., Blaber, M. (2014). Symmetric Protein Architecture in Protein Design: Top-Down Symmetric Deconstruction. In: Köhler, V. (eds) Protein Design. Methods in Molecular Biology, vol 1216. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1486-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1486-9_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1485-2

  • Online ISBN: 978-1-4939-1486-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics