Skip to main content

Computational Redesign of Metalloenzymes for Catalyzing New Reactions

  • Protocol
  • First Online:
Protein Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1216))

Abstract

The ability to design novel activities in existing metalloenzyme active sites is a stringent test of our understanding of enzyme mechanisms, sheds light on enzyme evolution, and would have many practical applications. Here, we describe a computational method in the context of the macromolecular modeling suite Rosetta to repurpose active sites containing metal ions for reactions of choice. The required inputs for the method are a model of the transition state(s) for the reaction and a set of crystallographic structures of proteins containing metal ions. The coordination geometry associated with the metal ion (Zn2+, for example) is automatically detected and the transition state model is aligned to the open metal coordination site(s) in the protein. Additional interactions to the transition state model are made using RosettaMatch and the surrounding amino acid side chain identities are optimized for transition state stabilization using RosettaDesign. Validation of the design is performed using docking and molecular dynamics simulations, and candidate designs are generated for experimental validation. Computational metalloenzyme repurposing is complementary to directed evolution approaches for enzyme engineering and allows large jumps in sequence space to make concerted sequence and structural changes for introducing novel enzymatic activities and specificities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu Y, Yeung N, Sieracki N, Marshall NM (2009) Design of functional metalloproteins. Nature 460:855–862

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Zastrow ML, Pecoraro VL (2013) Designing functional metalloproteins: from structural to catalytic metal sites. Coord Chem Rev 257: 2565–2588

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Vallee BL, Auld DS (1990) Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29:5647–5659

    Article  PubMed  CAS  Google Scholar 

  4. Vallee BL, Hoch FL (1955) Zinc, a component of yeast alcohol dehydrogenase. Proc Natl Acad Sci U S A 41:327–338

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Christianson DW, Cox JD (1999) Catalysis by metal-activated hydroxide in zinc and manganese metalloenzymes. Annu Rev Biochem 68:33–57

    Article  PubMed  CAS  Google Scholar 

  6. Khare SD, Kipnis Y, Greisen P, Takeuchi R, Ashani Y, Goldsmith M et al (2012) Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis. Nat Chem Biol 8:294–300

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Rohl CA, Strauss CEM, Misura KMS, Baker D (2004) Protein structure prediction using Rosetta. Methods Enzymol 383:66–93

    Article  PubMed  CAS  Google Scholar 

  8. Richter F, Leaver-Fay A, Khare SD, Bjelic S, Baker D (2011) De novo enzyme design using Rosetta3. PloS One 6:e19230

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302:1364–1368

    Article  PubMed  CAS  Google Scholar 

  10. Meiler J, Baker D (2006) ROSETTALIGAND: protein-small molecule docking with full side-chain flexibility. Proteins 65:538–548

    Article  PubMed  CAS  Google Scholar 

  11. Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N (2010) ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 38(Web Server issue):W529–W533

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T et al (2005) ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 33(Web Server issue):W299–W302

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Cooper S, Khatib F, Treuille A, Barbero J, Lee J, Beenen M et al (2010) Predicting protein structures with a multiplayer online game. Nature 466:756–760

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260

    Article  PubMed  Google Scholar 

  15. Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  17. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical-integration of Cartesian equations of motion of a system with constraints – molecular-dynamics of N-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  18. Darden T, York D, Pedersen L (1993) Particle mesh Ewald – an N.Log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  19. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Bioinf 65:712–725

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagar D. Khare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Greisen, P.J., Khare, S.D. (2014). Computational Redesign of Metalloenzymes for Catalyzing New Reactions. In: Köhler, V. (eds) Protein Design. Methods in Molecular Biology, vol 1216. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1486-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1486-9_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1485-2

  • Online ISBN: 978-1-4939-1486-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics