Skip to main content

Genetic Variation and RNA Binding Proteins: Tools and Techniques to Detect Functional Polymorphisms

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 825))

Abstract

At its most fundamental level the goal of genetics is to connect genotype to phenotype. This question is asked at a basic level evaluating the role of genes and pathways in genetic model organism. Increasingly, this question is being asked in the clinic. Genomes of individuals and populations are being sequenced and compared. The challenge often comes at the stage of analysis. The variant positions are analyzed with the hope of understanding human disease. However after a genome or exome has been sequenced, the researcher is often deluged with hundreds of potentially relevant variations. Traditionally, amino-acid changing mutations were considered the tractable class of disease-causing mutations; however, mutations that disrupt noncoding elements are the subject of growing interest. These noncoding changes are a major avenue of disease (e.g., one in three hereditary disease alleles are predicted to affect splicing). Here, we review some current practices of medical genetics, the basic theory behind biochemical binding and functional assays, and then explore technical advances in how variations that alter RNA protein recognition events are detected and studied. These advances are advances in scale—high-throughput implementations of traditional biochemical assays that are feasible to perform in any molecular biology laboratory. This chapter utilizes a case study approach to illustrate some methods for analyzing polymorphisms. The first characterizes a functional intronic SNP that deletes a high affinity PTB site using traditional low-throughput biochemical and functional assays. From here we demonstrate the utility of high-throughput splicing and spliceosome assembly assays for screening large sets of SNPs and disease alleles for allelic differences in gene expression. Finally we perform three pilot drug screens with small molecules (G418, tetracycline, and valproic acid) that illustrate how compounds that rescue specific instances of differential pre-mRNA processing can be discovered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073. doi:10.1038/nature09534

    PubMed  Google Scholar 

  • Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422):56–65. doi:10.1038/nature11632

    PubMed  Google Scholar 

  • Ars E, Serra E, Garcia J, Kruyer H, Gaona A, Lazaro C, Estivill X (2000) Mutations affecting mRNA splicing are the most common molecular defects in patients with neurofibromatosis type 1. Hum Mol Genet 9(2):237–247

    CAS  PubMed  Google Scholar 

  • Auweter SD, Oberstrass FC, Allain FHT (2006) Sequence-specific binding of single-stranded RNA: is there a code for recognition? Nucleic Acids Res 34(17):4943–4959. doi:10.1093/nar/gkl620

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berg MG, Wan L, Younis I, Diem MD, Soo M, Wang C, Dreyfuss G (2012) A quantitative high-throughput in vitro splicing assay identifies inhibitors of spliceosome catalysis. Mol Cell Biol 32(7):1271–1283. doi:10.1128/MCB.05788-11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berget SM (1995) Exon recognition in vertebrate splicing. J Biol Chem 270(6):2411–2414

    CAS  PubMed  Google Scholar 

  • Bessonov S, Anokhina M, Krasauskas A, Golas MM, Sander B, Will CL, Urlaub H, Stark H, Luhrmann R (2010) Characterization of purified human Bact spliceosomal complexes reveals compositional and morphological changes during spliceosome activation and first step catalysis. RNA 16(12):2384–2403. doi:10.1261/rna.2456210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boutz PL, Stoilov P, Li Q, Lin CH, Chawla G, Ostrow K, Shiue L, Ares M Jr, Black DL (2007) A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev 21(13):1636–1652

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brunak S, Engelbrecht J, Knudsen S (1991) Prediction of human mRNA donor and acceptor sites from the DNA sequence. J Mol Biol 220(1):49–65

    CAS  PubMed  Google Scholar 

  • Buratti E, Chivers M, Kralovicova J, Romano M, Baralle M, Krainer AR, Vorechovsky I (2007) Aberrant 5´ splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization. Nucleic Acids Res 35(13):4250–4263. doi:10.1093/nar/gkm402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burrows NP, Nicholls AC, Richards AJ, Luccarini C, Harrison JB, Yates JR, Pope FM (1998) A point mutation in an intronic branch site results in aberrant splicing of COL5A1 and in Ehlers-Danlos syndrome type II in two British families. Am J Hum Genet 63(2):390–398. doi:10.1086/301948

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bustamante CD, Burchard EG, De la Vega FM (2011) Genomics for the world. Nature 475(7355):163–165. doi:10.1038/475163a

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carmel I, Tal S, Vig I, Ast G (2004) Comparative analysis detects dependencies among the 5´ splice-site positions. RNA 10(5):828–840

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3(4):285–298. doi:10.1038/nrg775

    CAS  PubMed  Google Scholar 

  • Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR (2003) ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res 31(13):3568–3571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Casto AM, Feldman MW (2011) Genome-wide association study SNPs in the human genome diversity project populations: does selection affect unlinked SNPs with shared trait associations? PLoS Genet 7(1):e1001266. doi:10.1371/journal.pgen.1001266

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chang B, Levin J, Thompson WA, Fairbrother WG (2009) High-throughput binding analysis determines the binding specificity of ASF/SF2 on alternatively spliced human pre-mRNAs. Comb Chem High Throughput Screen 13(3):242–252

    Google Scholar 

  • Chasin LA (2007) Searching for splicing motifs. Adv Exp Med Biol 623:85–106

    PubMed  Google Scholar 

  • Chen IT, Chasin LA (1994) Large exon size does not limit splicing in vivo. Mol Cell Biol 14(3):2140–2146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cho DH, Tapscott SJ (2007) Myotonic dystrophy: emerging mechanisms for DM1 and DM2. Biochim Biophys Acta 1772(2):195–204. doi:10.1016/j.bbadis.2006.05.013

    CAS  PubMed  Google Scholar 

  • Chodosh LA (2001) UV crosslinking of proteins to nucleic acids. Curr Protoc Mol Biol Chapter 12: Unit 12 15

    Google Scholar 

  • Clark TA, Sugnet CW, Ares M Jr (2002) Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays. Science 296(5569):907–910. doi:10.1126/science.1069415

    CAS  PubMed  Google Scholar 

  • Cooper TA (2005) Use of minigene systems to dissect alternative splicing elements. Methods 37(4):331–340

    CAS  PubMed  Google Scholar 

  • Coulter LR, Landree MA, Cooper TA (1997) Identification of a new class of exonic splicing enhancers by in vivo selection. Mol Cell Biol 17(4):2143–2150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crotti L, Lewandowska MA, Schwartz PJ, Insolia R, Pedrazzini M, Bussani E, Dagradi F, George AL Jr, Pagani F (2009) A KCNH2 branch point mutation causing aberrant splicing contributes to an explanation of genotype-negative long QT syndrome. Heart Rhythm 6(2):212–218. doi:10.1016/j.hrthm.2008.10.044

    PubMed  Google Scholar 

  • Damgaard CK, Tange TO, Kjems J (2002) hnRNP A1 controls HIV-1 mRNA splicing through cooperative binding to intron and exon splicing silencers in the context of a conserved secondary structure. RNA 8(11):1401–1415

    CAS  PubMed Central  PubMed  Google Scholar 

  • Das MK, Dai HK (2007) A survey of DNA motif finding algorithms. BMC Bioinformatics 8(Suppl 7):S21, doi:1471-2105-8-S7-S21 [pii] 10.1186/1471-2105-8-S7-S21

    PubMed Central  PubMed  Google Scholar 

  • Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C (2009) Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37(9):e67. doi:10.1093/nar/gkp215

    PubMed Central  PubMed  Google Scholar 

  • Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB (2010) Rare variants create synthetic genome-wide associations. PLoS Biol 8(1):e1000294. doi:10.1371/journal.pbio.1000294

    PubMed Central  PubMed  Google Scholar 

  • Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11(5):1475–1489

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ding Y, Chan CY, Lawrence CE (2004) Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res 32(Web Server issue):W135–W141, doi:10.1093/nar/gkh449

    CAS  PubMed Central  PubMed  Google Scholar 

  • Divina P, Kvitkovicova A, Buratti E, Vorechovsky I (2009) Ab initio prediction of mutation-induced cryptic splice-site activation and exon skipping. Eur J Hum Genet 17(6):759–765. doi:10.1038/ejhg.2008.257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Djordjevic M (2007) SELEX experiments: new prospects, applications and data analysis in inferring regulatory pathways. Biomol Eng 24(2):179–189

    CAS  PubMed  Google Scholar 

  • Fairbrother WG, Chasin LA (2000) Human genomic sequences that inhibit splicing. Mol Cell Biol 20(18):6816–6825

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fairbrother WG, Yeh RF, Sharp PA, Burge CB (2002) Predictive identification of exonic splicing enhancers in human genes. Science 297(5583):1007–1013. doi:10.1126/science.1073774

    CAS  PubMed  Google Scholar 

  • Fairbrother WG, Yeo GW, Yeh R, Goldstein P, Mawson M, Sharp PA, Burge CB (2004) RESCUE-ESE identifies candidate exonic splicing enhancers in vertebrate exons. Nucleic Acids Res 32(Web Server issue):W187–W190, doi:10.1093/nar/gkh393

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferraris L, Stewart AP, Gemberling MP, Reid DC, Lapadula MJ, Thompson WA, Fairbrother WG (2011a) High-throughput mapping of protein occupancy identifies functional elements without the restriction of a candidate factor approach. Nucleic Acids Res 39(6):e33. doi:10.1093/nar/gkq1213

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferraris L, Stewart AP, Kang J, DeSimone AM, Gemberling M, Tantin D, Fairbrother WG (2011b) Combinatorial binding of transcription factors in the pluripotency control regions of the genome. Genome Res 21(7):1055–1064. doi:10.1101/gr.115824.110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Folco EG, Lei H, Hsu JL, Reed R (2012) Small-scale nuclear extracts for functional assays of gene-expression machineries. J Vis Exp. (64). doi:10.3791/4140

  • Fox-Walsh KL, Dou Y, Lam BJ, Hung SP, Baldi PF, Hertel KJ (2005) The architecture of pre-mRNAs affects mechanisms of splice-site pairing. Proc Natl Acad Sci U S A 102(45):16176–16181. doi:10.1073/pnas.0508489102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Furneaux HM, Perkins KK, Freyer GA, Arenas J, Hurwitz J (1985) Isolation and characterization of two fractions from HeLa cells required for mRNA splicing in vitro. Proc Natl Acad Sci U S A 82(13):4351–4355

    CAS  PubMed Central  PubMed  Google Scholar 

  • Girard C, Will CL, Peng J, Makarov EM, Kastner B, Lemm I, Urlaub H, Hartmuth K, Luhrmann R (2012) Post-transcriptional spliceosomes are retained in nuclear speckles until splicing completion. Nat Commun 3:994. doi:10.1038/ncomms1998

    PubMed  Google Scholar 

  • Gonzaga-Jauregui C, Lupski JR, Gibbs RA (2012) Human genome sequencing in health and disease. Annu Rev Med 63:35–61. doi:10.1146/annurev-med-051010-162644

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gooding C, Clark F, Wollerton MC, Grellscheid SN, Groom H, Smith CW (2006) A class of human exons with predicted distant branch points revealed by analysis of AG dinucleotide exclusion zones. Genome Biol 7(1):R1

    PubMed Central  PubMed  Google Scholar 

  • Gopinath SC (2007) Methods developed for SELEX. Anal Bioanal Chem 387(1):171–182

    CAS  PubMed  Google Scholar 

  • Goren A, Ram O, Amit M, Keren H, Lev-Maor G, Vig I, Pupko T, Ast G (2006) Comparative analysis identifies exonic splicing regulatory sequences–The complex definition of enhancers and silencers. Mol Cell 22(6):769–781. doi:10.1016/j.molcel.2006.05.008

    CAS  PubMed  Google Scholar 

  • Gozani O, Patton JG, Reed R (1994) A novel set of spliceosome-associated proteins and the essential splicing factor PSF bind stably to pre-mRNA prior to catalytic step II of the splicing reaction. EMBO J 13(14):3356–3367

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gravel S, Henn BM, Gutenkunst RN, Indap AR, Marth GT, Clark AG, Yu F, Gibbs RA, Bustamante CD (2011) Demographic history and rare allele sharing among human populations. Proc Natl Acad Sci U S A 108(29):11983–11988. doi:10.1073/pnas.1019276108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Halvorsen M, Martin JS, Broadaway S, Laederach A (2010) Disease-associated mutations that alter the RNA structural ensemble. PLoS Genet 6(8):e1001074. doi:10.1371/journal.pgen.1001074

    PubMed Central  PubMed  Google Scholar 

  • Hastings ML, Krainer AR (2001) Pre-mRNA splicing in the new millennium. Curr Opin Cell Biol 13(3):302–309

    CAS  PubMed  Google Scholar 

  • Hebsgaard SM, Korning PG, Tolstrup N, Engelbrecht J, Rouze P, Brunak S (1996) Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Res 24(17):3439–3452

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hertz GZ, Stormo GD (1999) Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics 15(7–8):563–577

    CAS  PubMed  Google Scholar 

  • Hoskins AA, Moore MJ (2012) The spliceosome: a flexible, reversible macromolecular machine. Trends Biochem Sci 37(5):179–188. doi:10.1016/j.tibs.2012.02.009

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jorde LB, Carey JC, White RL (1996) Medical genetics. Mosby Inc., Orlando

    Google Scholar 

  • Jurica MS, Moore MJ (2002) Capturing splicing complexes to study structure and mechanism. Methods 28(3):336–345

    CAS  PubMed  Google Scholar 

  • Jurica MS, Moore MJ (2003) Pre-mRNA splicing: awash in a sea of proteins. Mol Cell 12(1):5–14

    CAS  PubMed  Google Scholar 

  • Kanopka A, Muhlemann O, Akusjarvi G (1996) Inhibition by SR proteins of splicing of a regulated adenovirus pre-mRNA. Nature 381(6582):535–538. doi:10.1038/381535a0

    CAS  PubMed  Google Scholar 

  • Ke S, Shang S, Kalachikov SM, Morozova I, Yu L, Russo JJ, Ju J, Chasin LA (2011) Quantitative evaluation of all hexamers as exonic splicing elements. Genome Res 21(8):1360–1374. doi:10.1101/gr.119628.110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Knudsen B, Hein J (1999) RNA secondary structure prediction using stochastic context-free grammars and evolutionary history. Bioinformatics 15(6):446–454

    CAS  PubMed  Google Scholar 

  • Knudsen B, Hein J (2003) Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res 31(13):3423–3428

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krainer AR, Maniatis T, Ruskin B, Green MR (1984) Normal and mutant human beta-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell 36(4):993–1005

    CAS  PubMed  Google Scholar 

  • Kralovicova J, Vorechovsky I (2007) Global control of aberrant splice-site activation by auxiliary splicing sequences: evidence for a gradient in exon and intron definition. Nucleic Acids Res 35(19):6399–6413. doi:10.1093/nar/gkm680

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kralovicova J, Houngninou-Molango S, Kramer A, Vorechovsky I (2004) Branch site haplotypes that control alternative splicing. Hum Mol Genet 13(24):3189–3202. doi:10.1093/hmg/ddh334

    CAS  PubMed  Google Scholar 

  • Krawczak M, Reiss J, Cooper DN (1992) The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet 90(1–2):41–54

    CAS  PubMed  Google Scholar 

  • Krawczak M, Ball EV, Fenton I, Stenson PD, Abeysinghe S, Thomas N, Cooper DN (2000) Human gene mutation database-a biomedical information and research resource. Hum Mutat 15(1):45–51

    CAS  PubMed  Google Scholar 

  • Lander ES (1996) The new genomics: global views of biology. Science 274(5287):536–539

    CAS  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ (2001) Initial sequencing and analysis of the human genome. Nature 409(6822): 860–921

    Google Scholar 

  • Lareau LF, Inada M, Green RE, Wengrod JC, Brenner SE (2007) Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 446(7138):926–929, doi:nature05676 [pii] 10.1038/nature05676

    CAS  PubMed  Google Scholar 

  • Lim KH, Fairbrother WG (2012) Spliceman—a computational web server that predicts sequence variations in pre-mRNA splicing. Bioinformatics 28(7):1031–1032. doi:10.1093/bioinformatics/bts074

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lim KH, Ferraris L, Filloux ME, Raphael BJ, Fairbrother WG (2011) Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes. Proc Natl Acad Sci U S A 108(27):11093–11098. doi:10.1073/pnas.1101135108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin S, Fu XD (2007) SR proteins and related factors in alternative splicing. Adv Exp Med Biol 623:107–122

    PubMed  Google Scholar 

  • Lin RJ, Newman AJ, Cheng SC, Abelson J (1985) Yeast mRNA splicing in vitro. J Biol Chem 260(27):14780–14792

    CAS  PubMed  Google Scholar 

  • Long D, Lee R, Williams P, Chan CY, Ambros V, Ding Y (2007) Potent effect of target structure on microRNA function. Nat Struct Mol Biol 14(4):287–294

    CAS  PubMed  Google Scholar 

  • Manley JL, Tacke R (1996) SR proteins and splicing control. Genes Dev 10(13):1569–1579

    CAS  PubMed  Google Scholar 

  • Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753. doi:10.1038/nature08494

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manolio TA, Chisholm RL, Ozenberger B, Roden DM, Williams MS, Wilson R, Bick D, Bottinger EP, Brilliant MH, Eng C, Frazer KA, Korf B, Ledbetter DH, Lupski JR, Marsh C, Mrazek D, Murray MF, O’Donnell PH, Rader DJ, Relling MV, Shuldiner AR, Valle D, Weinshilboum R, Green ED, Ginsburg GS (2013) Implementing genomic medicine in the clinic: the future is here. Genet Med 15(4):258–267. doi:10.1038/gim.2012.157

    PubMed Central  PubMed  Google Scholar 

  • Martinez-Contreras R, Fisette JF, Nasim FU, Madden R, Cordeau M, Chabot B (2006) Intronic binding sites for hnRNP A/B and hnRNP F/H proteins stimulate pre-mRNA splicing. PLoS Biol 4(2):e21

    PubMed Central  PubMed  Google Scholar 

  • Maslen C, Babcock D, Raghunath M, Steinmann B (1997) A rare branch-point mutation is associated with missplicing of fibrillin-2 in a large family with congenital contractural arachnodactyly. Am J Hum Genet 60(6):1389–1398. doi:10.1086/515472

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matlin AJ, Moore MJ (2007) Spliceosome assembly and composition. Adv Exp Med Biol 623:14–35

    PubMed  Google Scholar 

  • McNally LM, McNally MT (1996) SR protein splicing factors interact with the Rous sarcoma virus negative regulator of splicing element. J Virol 70(2):1163–1172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer M, Plass M, Perez-Valle J, Eyras E, Vilardell J (2011) Deciphering 3´ss selection in the yeast genome reveals an RNA thermosensor that mediates alternative splicing. Mol Cell 43(6):1033–1039. doi:10.1016/j.molcel.2011.07.030

    CAS  PubMed  Google Scholar 

  • Nielsen KB, Sorensen S, Cartegni L, Corydon TJ, Doktor TK, Schroeder LD, Reinert LS, Elpeleg O, Krainer AR, Gregersen N, Kjems J, Andresen BS (2007) Seemingly neutral polymorphic variants may confer immunity to splicing-inactivating mutations: a synonymous SNP in exon 5 of MCAD protects from deleterious mutations in a flanking exonic splicing enhancer. Am J Hum Genet 80(3):416–432. doi:10.1086/511992

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Brien K, Matlin AJ, Lowell AM, Moore MJ (2008) The biflavonoid isoginkgetin is a general inhibitor of Pre-mRNA splicing. J Biol Chem 283(48):33147–33154. doi:10.1074/jbc.M805556200

    PubMed Central  PubMed  Google Scholar 

  • Pagani F, Buratti E, Stuani C, Bendix R, Dork T, Baralle FE (2002) A new type of mutation causes a splicing defect in ATM. Nat Genet 30(4):426–429. doi:10.1038/ng858

    CAS  PubMed  Google Scholar 

  • Pagani F, Stuani C, Tzetis M, Kanavakis E, Efthymiadou A, Doudounakis S, Casals T, Baralle FE (2003) New type of disease causing mutations: the example of the composite exonic regulatory elements of splicing in CFTR exon 12. Hum Mol Genet 12(10):1111–1120

    CAS  PubMed  Google Scholar 

  • Pagani F, Raponi M, Baralle FE (2005) Synonymous mutations in CFTR exon 12 affect splicing and are not neutral in evolution. Proc Natl Acad Sci U S A 102(18):6368–6372. doi:10.1073/pnas.0502288102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40(12):1413–1415. doi:10.1038/ng.259

    CAS  PubMed  Google Scholar 

  • Perez I, Lin CH, McAfee JG, Patton JG (1997) Mutation of PTB binding sites causes misregulation of alternative 3´ splice site selection in vivo. RNA 3(7):764–778

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pleiss JA, Whitworth GB, Bergkessel M, Guthrie C (2007) Transcript specificity in yeast pre-mRNA splicing revealed by mutations in core spliceosomal components. PLoS Biol 5(4):e90. doi:10.1371/journal.pbio.0050090

    PubMed Central  PubMed  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38(8):904–909. doi:10.1038/ng1847

    CAS  PubMed  Google Scholar 

  • Ramachandran S, Deshpande O, Roseman CC, Rosenberg NA, Feldman MW, Cavalli-Sforza LL (2005) Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc Natl Acad Sci U S A 102(44):15942–15947. doi:10.1073/pnas.0507611102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ranum LP, Cooper TA (2006) RNA-mediated neuromuscular disorders. Annu Rev Neurosci 29:259–277. doi:10.1146/annurev.neuro.29.051605.113014

    CAS  PubMed  Google Scholar 

  • Reese MG, Eeckman FH, Kulp D, Haussler D (1997) Improved splice site detection in Genie. J Comput Biol 4(3):311–323

    CAS  PubMed  Google Scholar 

  • Reich DE, Schaffner SF, Daly MJ, McVean G, Mullikin JC, Higgins JM, Richter DJ, Lander ES, Altshuler D (2002) Human genome sequence variation and the influence of gene history, mutation and recombination. Nat Genet 32(1):135–142

    CAS  PubMed  Google Scholar 

  • Reid DC, Chang BL, Gunderson SI, Alpert L, Thompson WA, Fairbrother WG (2009) Next-generation SELEX identifies sequence and structural determinants of splicing factor binding in human pre-mRNA sequence. RNA 15(12):2385–2397. doi:10.1261/rna.1821809

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robberson BL, Cote GJ, Berget SM (1990) Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol Cell Biol 10(1):84–94

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roca X, Akerman M, Gaus H, Berdeja A, Bennett CF, Krainer AR (2012) Widespread recognition of 5´ splice sites by noncanonical base-pairing to U1 snRNA involving bulged nucleotides. Genes Dev 26(10):1098–1109. doi:10.1101/gad.190173.112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruskin B, Krainer AR, Maniatis T, Green MR (1984) Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell 38(1):317–331

    CAS  PubMed  Google Scholar 

  • Sabeti PC, Reich DE, Higgins JM, Levine HZ, Richter DJ, Schaffner SF, Gabriel SB, Platko JV, Patterson NJ, McDonald GJ, Ackerman HC, Campbell SJ, Altshuler D, Cooper R, Kwiatkowski D, Ward R, Lander ES (2002) Detecting recent positive selection in the human genome from haplotype structure. Nature 419(6909):832–837

    CAS  PubMed  Google Scholar 

  • Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL, Hunt SE, Cole CG, Coggill PC, Rice CM, Ning Z, Rogers J, Bentley DR, Kwok PY, Mardis ER, Yeh RT, Schultz B, Cook L, Davenport R, Dante M, Fulton L, Hillier L, Waterston RH, McPherson JD, Gilman B, Schaffner S, Van Etten WJ, Reich D, Higgins J, Daly MJ, Blumenstiel B, Baldwin J, Stange-Thomann N, Zody MC, Linton L, Lander ES, Altshuler D (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409(6822):928–933

    CAS  PubMed  Google Scholar 

  • Schwartz S, Ast G (2010) Chromatin density and splicing destiny: on the cross-talk between chromatin structure and splicing. EMBO J 29(10):1629–1636. doi:10.1038/emboj.2010.71

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sciabica KS, Hertel KJ (2006) The splicing regulators Tra and Tra2 are unusually potent activators of pre-mRNA splicing. Nucleic Acids Res 34(22):6612–6620

    CAS  PubMed Central  PubMed  Google Scholar 

  • Siddharthan R (2007) Parsing regulatory DNA: general tasks, techniques, and the PhyloGibbs approach. J Biosci 32(5):863–870

    CAS  PubMed  Google Scholar 

  • Singh R, Valcarcel J, Green MR (1995) Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science 268(5214):1173–1176

    CAS  PubMed  Google Scholar 

  • Smith PJ, Zhang C, Wang J, Chew SL, Zhang MQ, Krainer AR (2006) An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum Mol Genet 15(16):2490–2508. doi:10.1093/hmg/ddl171

    CAS  PubMed  Google Scholar 

  • Steiner B, Truninger K, Sanz J, Schaller A, Gallati S (2004) The role of common single-nucleotide polymorphisms on exon 9 and exon 12 skipping in nonmutated CFTR alleles. Hum Mutat 24(2):120–129. doi:10.1002/humu.20064

    CAS  PubMed  Google Scholar 

  • Steitz JA, Dreyfuss G, Krainer AR, Lamond AI, Matera AG, Padgett RA (2008) Where in the cell is the minor spliceosome? Proc Natl Acad Sci U S A 105(25):8485–8486. doi:10.1073/pnas.0804024105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, Abeysinghe S, Krawczak M, Cooper DN (2003) Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 21(6):577–581

    CAS  PubMed  Google Scholar 

  • Sterne-Weiler T, Howard J, Mort M, Cooper DN, Sanford JR (2011) Loss of exon identity is a common mechanism of human inherited disease. Genome Res 21(10):1563–1571. doi:10.1101/gr.118638.110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX–a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24(4):381–403, doi:S1389-0344(07)00066-4 [pii] 10.1016/j.bioeng.2007.06.001

    CAS  PubMed  Google Scholar 

  • Sun H, Chasin LA (2000) Multiple splicing defects in an intronic false exon. Mol Cell Biol 20(17):6414–6425

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taggart AJ, DeSimone AM, Shih JS, Filloux ME, Fairbrother WG (2012) Large-scale mapping of branchpoints in human pre-mRNA transcripts in vivo. Nat Struct Mol Biol 19(7):719–721. doi:10.1038/nsmb.2327

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tantin D, Gemberling M, Callister C, Fairbrother W (2008) High-throughput biochemical analysis of in vivo location data reveals novel distinct classes of POU5F1(Oct4)/DNA complexes. Genome Res 18(4):631–639

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teraoka SN, Telatar M, Becker-Catania S, Liang T, Onengut S, Tolun A, Chessa L, Sanal O, Bernatowska E, Gatti RA, Concannon P (1999) Splicing defects in the ataxia-telangiectasia gene, ATM: underlying mutations and consequences. Am J Hum Genet 64(6):1617–1631. doi:10.1086/302418

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ule J, Stefani G, Mele A, Ruggiu M, Wang X, Taneri B, Gaasterland T, Blencowe BJ, Darnell RB (2006) An RNA map predicting Nova-dependent splicing regulation. Nature 444(7119):580–586. doi:10.1038/nature05304

    CAS  PubMed  Google Scholar 

  • Vorechovsky I (2006) Aberrant 3´ splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization. Nucleic Acids Res 34(16):4630–4641. doi:10.1093/nar/gkl535

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang GS, Cooper TA (2007) Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 8(10):749–761. doi:10.1038/nrg2164

    CAS  PubMed  Google Scholar 

  • Wang Z, Rolish ME, Yeo G, Tung V, Mawson M, Burge CB (2004) Systematic identification and analysis of exonic splicing silencers. Cell 119(6):831–845. doi:10.1016/j.cell.2004.11.010

    CAS  PubMed  Google Scholar 

  • Wang Z, Xiao X, Van Nostrand E, Burge CB (2006) General and specific functions of exonic splicing silencers in splicing control. Mol Cell 23(1):61–70. doi:10.1016/j.molcel.2006.05.018

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456(7221):470–476. doi:10.1038/nature07509

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waters KM, Stram DO, Hassanein MT, Le Marchand L, Wilkens LR, Maskarinec G, Monroe KR, Kolonel LN, Altshuler D, Henderson BE, Haiman CA (2010) Consistent association of type 2 diabetes risk variants found in Europeans in diverse racial and ethnic groups. PLoS Genet 6(8). doi:10.1371/journal.pgen.1001078

  • Watkins KH, Stewart A, Fairbrother W (2009) A rapid high-throughput method for mapping ribonucleoproteins (RNPs) on human pre-mRNA. J Vis Exp. (34)

    Google Scholar 

  • Waugh JL, Celver J, Sharma M, Dufresne RL, Terzi D, Risch SC, Fairbrother WG, Neve RL, Kane JP, Malloy MJ, Pullinger CR, Gu HF, Tsatsanis C, Hamilton SP, Gold SJ, Zachariou V, Kovoor A (2011) Association between regulator of G protein signaling 9-2 and body weight. PLoS One 6(11):e27984. doi:10.1371/journal.pone.0027984

    CAS  PubMed Central  PubMed  Google Scholar 

  • Webb JC, Patel DD, Shoulders CC, Knight BL, Soutar AK (1996) Genetic variation at a splicing branch point in intron 9 of the low density lipoprotein (LDL)-receptor gene: a rare mutation that disrupts mRNA splicing in a patient with familial hypercholesterolaemia and a common polymorphism. Hum Mol Genet 5(9):1325–1331

    CAS  PubMed  Google Scholar 

  • Yajima M, Fairbrother WG, Wessel GM (2012) ISWI contributes to ArsI insulator function in development of the sea urchin. Development 139(19):3613–3622. doi:10.1242/dev.081828

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yeo G, Burge CB (2004) Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol 11(2–3):377–394. doi:10.1089/1066527041410418

    CAS  PubMed  Google Scholar 

  • Yeo GW, Van Nostrand E, Holste D, Poggio T, Burge CB (2005) Identification and analysis of alternative splicing events conserved in human and mouse. Proc Natl Acad Sci U S A 102(8):2850–2855, doi:0409742102 [pii] 10.1073/pnas.0409742102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang XH, Chasin LA (2004) Computational definition of sequence motifs governing constitutive exon splicing. Genes Dev 18(11):1241–1250. doi:10.1101/gad.1195304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang XH, Leslie CS, Chasin LA (2005a) Dichotomous splicing signals in exon flanks. Genome Res 15(6):768–779. doi:10.1101/gr.3217705

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang XH, Leslie CS, Chasin LA (2005b) Computational searches for splicing signals. Methods 37(4):292–305. doi:10.1016/j.ymeth.2005.07.011

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William G. Fairbrother .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Soemedi, R., Vega, H., Belmont, J.M., Ramachandran, S., Fairbrother, W.G. (2014). Genetic Variation and RNA Binding Proteins: Tools and Techniques to Detect Functional Polymorphisms. In: Yeo, G. (eds) Systems Biology of RNA Binding Proteins. Advances in Experimental Medicine and Biology, vol 825. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1221-6_7

Download citation

Publish with us

Policies and ethics