Skip to main content

Fifteen Years of Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)

  • Protocol
  • First Online:
Book cover Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1188))

Abstract

Here I describe the history of the Stable Isotope Labeling by Amino Acids in Cell culture (SILAC) technology. Although published in 2002, it had already been developed and used in my laboratory for a number of years. From the beginning, it was applied to challenging problems in cell signaling that were considered out of reach for proteomics at the time. It was also used to pioneer proteomic interactomics, time series and dynamic posttranslational modification studies. While initially developed for metabolically accessible systems, such as cell lines, it was subsequently extended to whole animal labeling as well as to clinical applications—in the form or spike-in or super-SILAC. New formats and applications for SILAC labeling continue to be developed, for instance for protein-turnover studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  PubMed  Google Scholar 

  2. Mann M, Hendrickson RC, Pandey A (2001) Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70:437–473

    Article  CAS  PubMed  Google Scholar 

  3. Steen H et al (2002) Tyrosine phosphorylation mapping of the epidermal growth factor receptor signaling pathway. J Biol Chem 277(2):1031–1039

    Article  CAS  PubMed  Google Scholar 

  4. Ong SE, Kratchmarova I, Mann M (2003) Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res 2(2):173–181

    Article  CAS  PubMed  Google Scholar 

  5. Bendall SC et al (2008) Prevention of amino acid conversion in SILAC experiments with embryonic stem cells. Mol Cell Proteomics 7(9):1587–1597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Park SK et al (2009) A computational approach to correct arginine-to-proline conversion in quantitative proteomics. Nat Methods 6(3):184–185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Bicho CC et al (2010) A genetic engineering solution to the “arginine conversion problem” in stable isotope labeling by amino acids in cell culture (SILAC). Mol Cell Proteomics 9(7):1567–1577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Julka S, Regnier F (2004) Quantification in proteomics through stable isotope coding: a review. J Proteome Res 3(3):350–363

    Article  CAS  PubMed  Google Scholar 

  9. Martinovic S et al (2002) Selective incorporation of isotopically labeled amino acids for identification of intact proteins on a proteome-wide level. J Mass Spectrom 37(1):99–107

    Article  PubMed  Google Scholar 

  10. Gygi SP et al (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999

    Article  CAS  PubMed  Google Scholar 

  11. Lasonder E et al (2002) Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419(6906):537–542

    Article  CAS  PubMed  Google Scholar 

  12. Andersen JS et al (2003) Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426(6966):570–574

    Article  CAS  PubMed  Google Scholar 

  13. Mann M (2006) Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7(12):952–958

    Article  CAS  PubMed  Google Scholar 

  14. Choudhary C et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942):834–840

    Article  CAS  PubMed  Google Scholar 

  15. Walther TC, Mann M (2010) Mass spectrometry-based proteomics in cell biology. J Cell Biol 190(4):491–500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Blagoev B et al (2003) A proteomics strategy to elucidate functional protein–protein interactions applied to EGF signaling. Nat Biotechnol 21(3):315–318

    Article  CAS  PubMed  Google Scholar 

  17. Olsen JV et al (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3):635–648

    Article  CAS  PubMed  Google Scholar 

  18. Mortensen P et al (2010) MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. J Proteome Res 9(1):393–403

    Article  CAS  PubMed  Google Scholar 

  19. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372

    Article  CAS  PubMed  Google Scholar 

  20. de Godoy LM et al (2008) Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455(7217):1251–1254

    Article  PubMed  Google Scholar 

  21. Nagaraj N et al (2012) System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench-top Orbitrap. Mol Cell Proteomics 11(3):M111.013722

    Article  PubMed Central  PubMed  Google Scholar 

  22. Mann M et al (2013) The coming age of complete, accurate, and ubiquitous proteomes. Mol Cell 49(4):583–590

    Article  CAS  PubMed  Google Scholar 

  23. Geiger T et al (2011) Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics. Nat Protoc 6(2):147–157

    Article  CAS  PubMed  Google Scholar 

  24. Geiger T et al (2010) Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Methods 7(5):383–385

    Article  CAS  PubMed  Google Scholar 

  25. Meissner F et al (2013) Direct proteomic quantification of the secretome of activated immune cells. Science 340(6131):475–478

    Article  CAS  PubMed  Google Scholar 

  26. Deeb SJ et al (2012) Super-SILAC allows classification of diffuse large B-cell lymphoma subtypes by their protein expression profiles. Mol Cell Proteomics 11(5):77–89

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Zielinska DF et al (2010) Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141(5):897–907

    Article  CAS  PubMed  Google Scholar 

  28. Blagoev B et al (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol 22(9):1139–1145

    Article  CAS  PubMed  Google Scholar 

  29. Hubner NC et al (2010) Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J Cell Biol 189(4):739–754

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Mittler G, Butter F, Mann M (2009) A SILAC-based DNA protein interaction screen that identifies candidate binding proteins to functional DNA elements. Genome Res 19(2):284–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Vermeulen M et al (2010) Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142(6):967–980

    Article  CAS  PubMed  Google Scholar 

  32. Butter F et al (2012) Proteome-wide analysis of disease-associated SNPs that show allele-specific transcription factor binding. PLoS Genet 8(9):e1002982

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Doherty MK et al (2009) Turnover of the human proteome: determination of protein intracellular stability by dynamic SILAC. J Proteome Res 8(1):104–112

    Article  CAS  PubMed  Google Scholar 

  34. Schwanhausser B et al (2009) Global analysis of cellular protein translation by pulsed SILAC. Proteomics 9(1):205–209

    Article  PubMed  Google Scholar 

  35. Selbach M et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209):58–63

    Article  CAS  PubMed  Google Scholar 

  36. Jorgensen C et al (2009) Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells. Science 326(5959):1502–1509

    Article  CAS  PubMed  Google Scholar 

  37. Nagaraj N et al (2011) Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol 7:548

    Article  PubMed Central  PubMed  Google Scholar 

  38. Beck M et al (2011) The quantitative proteome of a human cell line. Mol Syst Biol 7:549

    Article  PubMed Central  PubMed  Google Scholar 

  39. Michalski A et al (2011) Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol Cell Proteomics 10(9):M111.011015

    Article  PubMed Central  PubMed  Google Scholar 

  40. Rose CM et al (2013) Neutron encoded labeling for peptide identification. Anal Chem 85(10):5129–5137

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Mann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mann, M. (2014). Fifteen Years of Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC). In: Warscheid, B. (eds) Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC). Methods in Molecular Biology, vol 1188. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1142-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1142-4_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1141-7

  • Online ISBN: 978-1-4939-1142-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics