Skip to main content

Planar Patch Clamp for Neuronal Networks—Considerations and Future Perspectives

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1183))

Abstract

The patch-clamp technique is generally accepted as the gold standard for studying ion channel activity allowing investigators to either “clamp” membrane voltage and directly measure transmembrane currents through ion channels, or to passively monitor spontaneously occurring intracellular voltage oscillations. However, this resulting high information content comes at a price. The technique is labor-intensive and requires highly trained personnel and expensive equipment. This seriously limits its application as an interrogation tool for drug development. Patch-clamp chips have been developed in the last decade to overcome the tedious manipulations associated with the use of glass pipettes in conventional patch-clamp experiments. In this chapter, we describe some of the main materials and fabrication protocols that have been developed to date for the production of patch-clamp chips. We also present the concept of a patch-clamp chip array providing high resolution patch-clamp recordings from individual cells at multiple sites in a network of communicating neurons. On this chip, the neurons are aligned with the aperture-probes using chemical patterning. In the discussion we review the potential use of this technology for pharmaceutical assays, neuronal physiology and synaptic plasticity studies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sigworth FJ, Klemic KG (2005) Microchip technology in ion-channel research. IEEE Trans Nanobioscience 4:121–127

    Article  PubMed  Google Scholar 

  2. Fertig N, Meyer C, Blick RH et al (2001) Microstructured glass chip for ion-channel electrophysiology. Phys Rev E Stat Nonlin Soft Matter Phys 64(1):040901

    Article  CAS  PubMed  Google Scholar 

  3. Behrends JC, Fertig N (2007) Planar patch clamping. In: Walz W (ed) Patch-clamp analysis, advanced techniques. Humana Press, Totowa, NJ, pp 411–433

    Chapter  Google Scholar 

  4. Sondermann M, George M, Fertig N et al (2006) High-resolution electrophysiology on a chip: transient dynamics of alamethicin channel formation. Biochim Biophys Acta 1758(4):545–551

    Article  CAS  PubMed  Google Scholar 

  5. Martina M, Luk C, Py C et al (2011) Recordings of cultured neurons and synaptic activity using patch-clamp chips. J Neural Eng 8(3):034002. doi:10.1088/1741-2560/8/3/034002

    Article  PubMed  Google Scholar 

  6. Harms GS, Orr G, Montal M et al (2003) Probing conformational changes of gramicidin ion channels by single-molecule patch-clamp fluorescence microscopy. Biophys J 85:1826–1838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Gullo MR, Akiyama T, Frederix PLTM et al (2005) Towards a planar sample support for in situ experiments in structural biology. Microelectron Eng 78–79:571–574

    Article  Google Scholar 

  8. Dunlop J, Bowlby M, Peri R et al (2008) High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat Rev Drug Discov 7:358–368

    Article  CAS  PubMed  Google Scholar 

  9. Taketani M, Baudry M (2006) Advances in network electrophysiology: using multi-electrode arrays. Springer, New York, NY

    Book  Google Scholar 

  10. Jones IL, Livi P, Lewandowska MK et al (2011) The potential of microelectrode arrays and microelectronics for biomedical research and diagnostics. Anal Bioanal Chem 399:2313–2329

    Article  CAS  PubMed  Google Scholar 

  11. Berdondini L, van der Wal PD, Guenat O et al (2005) High-density electrode array for imaging in vitro electrophysiological activity. Biosens Bioelectron 21(1):167–174

    Article  CAS  PubMed  Google Scholar 

  12. Maccione A, Garofalo M, Nieus T et al (2012) Multiscale functional connectivity estimation on low-density neuronal cultures recorded by high-density CMOS micro electrode arrays. J Neurosci Methods 207(2):161–171

    Article  PubMed  Google Scholar 

  13. Fromherz P (2006) Three levels of neuroelectronic interfacing: silicon chips with ion channels, nerve cells, and brain tissue. Ann N Y Acad Sci 1093:143–160

    Article  CAS  PubMed  Google Scholar 

  14. Patolsky F, Timko BP, Yu G et al (2006) Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313:1100–1104

    Article  CAS  PubMed  Google Scholar 

  15. Frey U, Egert U, Heer F et al (2009) Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices. Biosens Bioelectron 24:2191–2198

    Article  CAS  PubMed  Google Scholar 

  16. Berdondini L, Imfeld K, Maccione A et al (2009) Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9:2644–2651

    Article  CAS  PubMed  Google Scholar 

  17. Ferrea E, Maccione A, Medrihan L et al (2012) Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays. Front Neural Circ 6:80. doi:10.3389/fncir.2012.00080

    CAS  Google Scholar 

  18. Shein M, Greenbaum A, Gabay T et al (2009) Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays. Biomed Microdevices 11(2):495–501

    Article  CAS  PubMed  Google Scholar 

  19. Huys R, Braeken D, Micholt L et al (2011) Micro-sized syringes for single-cell fluidic access integrated on a micro-electrode array CMOS chip. Conf Proc IEEE Eng Med Biol Soc 2011:7650–7653. doi:10.1109/IEMBS.2011.6091885

    PubMed  Google Scholar 

  20. Hai A, Shappir J, Spira ME (2010) In-cell recordings by extracellular microelectrodes. Nat Methods 7:200–202

    Article  CAS  PubMed  Google Scholar 

  21. Mealing G, Py C (2011) Patch-clamp array neurochips: value in interrogating simple neuronal networks with high resolution. Expert Rev Med Devices 8(1):3–5

    Article  PubMed  Google Scholar 

  22. Mealing G, Bani-Yaghoub M, Tremblay R et al (2005) Application of polymer microstructures with controlled surface chemistries as a platform for creating and interfacing with synthetic neural networks. In: Proceedings of the IEEE international joint conference on neuronal networks, vol 5. IEEE, New York, NY, pp 3115–3116. doi:10.1109/IJCNN.2005.1556425

    Google Scholar 

  23. Branch DW, Corey JM, Weyhenmeyer JA et al (1998) Microstamp patterns of biomolecules for high-resolution neuronal networks. Med Biol Eng Comput 36(1):135–141

    Article  CAS  PubMed  Google Scholar 

  24. Offenhausser A, Bocker-Meffert S, Decker T et al (2007) Microcontact printing of proteins for neuronal cell guidance. Soft Matter 3:290–298

    Article  Google Scholar 

  25. Park TH, Shuler ML (2003) Integration of cell culture and microfabrication technology. Biotechnol Prog 19(2):243–253

    Article  CAS  PubMed  Google Scholar 

  26. Fertig N, Tile A, Blick RH et al (1999) Stable integration of isolated cell membrane patches in a nanomachine aperture: a step towards a novel device for membrane physiology. Appl Phys Lett 77(8):1218–1220

    Article  Google Scholar 

  27. Schmidt C (2000) A chip-based biosensor for the functional analysis of single ion channels. Angew Chem Int Ed Engl 39(17):3137–3140

    Article  CAS  PubMed  Google Scholar 

  28. Gad-el-Hak M (2001) The MEMS handbook. CRC Press, Boca Raton

    Book  Google Scholar 

  29. Kaul RA, Syed NI, Fromherz P (2004) Neuron-semiconductor chip with chemical synapse between identified neurons. Phys Rev Lett 92(3):038102

    Article  PubMed  Google Scholar 

  30. Lehnert T, Gijs MAM, Netzer R et al (2002) Realization of hollow SiO2 micronozzles for electrical measurements on living cells. Appl Phys Lett 81:5063–5065

    Article  CAS  Google Scholar 

  31. Stett A, Burkhardt C, Weber U et al (2003) CYTOCENTERING: a novel technique enabling automated cell-by-cell patch clamping with the CYTOPATCH chip. Receptors Channels 9(1):59–66

    Article  CAS  PubMed  Google Scholar 

  32. Pantoja R, Nagarah JM, Starace DM et al (2004) Silicon chip-based patch-clamp electrodes integrated with PDMS microfluidics. Biosens Bioelectron 20(3):509–517

    Article  CAS  PubMed  Google Scholar 

  33. Matthews B, Judy JW (2006) Design and fabrication of a micromachined planar patch-clamp substrate with integrated microfluidics for single-cell measurements. J Microelectromech Syst 15:214–222

    Article  Google Scholar 

  34. Curtis JC, Baldwin K, Dworak BJ et al (2008) Seal formation in silicon planar patch-clamp microstructures. J Microelectromech Syst 17: 974–983

    Article  CAS  Google Scholar 

  35. Py C, Denhoff MW, Martina M et al (2010) A novel silicon patch-clamp chip permits high-fidelity recording of ion channel activity from functionally defined neurons. Biotechnol Bioeng 107(4):593–600

    Article  CAS  PubMed  Google Scholar 

  36. Sordel T, Kermarrec F, Sinquin Y et al (2010) The development of high quality seals for silicon patch-clamp chips. Biomaterials 31:7398–7410

    Article  CAS  PubMed  Google Scholar 

  37. Fertig N, Behrends JC, George M et al (2003) Microstructured apertures in planar glass substrates for ion channel research. Receptors Channels 9:29–40

    Article  CAS  PubMed  Google Scholar 

  38. Stett A, Bucher V, Burkhardt C et al (2003) Patch-clamping of primary cardiac cells with micro-openings in polyimide films. Med Biol Eng Comput 41:233–240

    Article  CAS  PubMed  Google Scholar 

  39. Klemic KG, Klemic JF, Reed MA et al (2002) Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells. Biosens Bioelectron 17(6–7):597–604

    Article  CAS  PubMed  Google Scholar 

  40. Chen C-Y, Tu T-Y, Chen C-H et al (2009) Patch clamping on plane glass-fabrication of hourglass aperture and high-yield ion channel recording. Lab Chip 9:2370–2380

    Article  CAS  PubMed  Google Scholar 

  41. Nagarah JM, Paek E, Luo Y et al (2010) Batch fabrication of high-performance planar patch-clamp devices in quartz. Adv Mater 22:4622–4627

    Article  CAS  PubMed  Google Scholar 

  42. Metz S, Holzer R, Renaud P (2001) Polyimide-based microfluidic devices. Lab Chip 1:29–34

    Article  CAS  PubMed  Google Scholar 

  43. Metz S, Bertsch A, Bertrand D et al (2004) Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity. Biosens Bioelectron 19:1309–1318

    Article  CAS  PubMed  Google Scholar 

  44. Kristensen BW, Noraberg J, Thiébaud P et al (2001) Biocompatibility of silicon-based arrays of electrodes coupled to organotypic hippocampal brain slice cultures. Brain Res 896:1–17

    Article  CAS  PubMed  Google Scholar 

  45. Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:550–575

    Article  CAS  Google Scholar 

  46. Weibel DB, Diluzio WR, Whitesides GM (2007) Microfabrication meets microbiology. Nat Rev Microbiol 5:209–218

    Article  CAS  PubMed  Google Scholar 

  47. Martinez D, Py C, Denhoff MW et al (2010) High-fidelity patch-clamp recordings from neurons cultured on a polymer microchip. Biom Microdev 12:977–985

    Article  CAS  Google Scholar 

  48. Klemic KG, Klemic JF, Sigworth FJ (2005) An air-molding technique for fabricating PDMS planar patch-clamp electrodes. Pflugers Arch 449:564–572

    Article  CAS  PubMed  Google Scholar 

  49. Alberti M, Snakenborg D, Lopacinska J et al (2010) Characterization of a patch-clamp microchannel array towards neuronal networks analysis. Microfluid Nanofluid 9:963–972

    Article  CAS  Google Scholar 

  50. Py C, Martina M, Monette R, Comas T, Denhoff MW, Luk C et al. (2012) Culturing and electrophysiology of cells on NRCC patch-clamp chips. J Vis Exp. (60), e3288, doi: 10.3791/3288

  51. Bosca A, Magrassi R, Firpo G et al. (2009) Air molding for planar patch clamp on adherent neuronal networks. IEEE-NANO 2009. 9th IEEE conference on nanotechnology, July 26–30, 2009 Genoa, Italy

    Google Scholar 

  52. Lau AY, Hung PJ, Wu AR et al (2006) Open-access microfluidic patch-clamp array with raised lateral cell trapping sites. Lab Chip 6:1510–1515

    Article  CAS  PubMed  Google Scholar 

  53. Tang KC, Reboud J, Kwok YL et al (2010) Lateral patch-clamping in a standard 1536-well microplate format. Lab Chip 10:1044–1050

    Article  CAS  PubMed  Google Scholar 

  54. Seo J, Ionescu-Zanetti C, Diamond J et al (2004) Integrated multiple patch-clamp array chip via lateral cell trapping junctions. Appl Phys Lett 84:1973–1975

    Article  CAS  Google Scholar 

  55. Faid K, Voicu R, Bani-Yaghoub M et al (2005) Rapid fabrication and chemical patterning of polymer microstructures and their applications as a platform for cell cultures. Biomed Microdevices 7:179–184

    Article  CAS  PubMed  Google Scholar 

  56. Merz M, Fromherz P (2005) Silicon chip interfaced with a geometrically defined net of snail neurons. Adv Funct Mater 15:739–744

    Article  CAS  Google Scholar 

  57. Sorkin R, Greenbaum A, David-Pur M et al (2009) Process entanglement as a neuronal anchorage mechanism to rough surfaces. Nanotechnology 20(1):015101. doi:10.1088/0957-4484/20/1/015101

    Article  PubMed  Google Scholar 

  58. Maher MP, Pine J, Wright J et al (1999) The neurochip: a new multielectrode device for stimulating and recording from cultured neurons. J Neurosci Meth 87:45–56

    Article  CAS  Google Scholar 

  59. Wheeler BC, Brewer GJ (2010) Designing neural networks in culture: experiments are described for controlled growth, of nerve cells taken from rats, in predesigned geometrical patterns on laboratory culture dishes. Proc IEEE 98:398–406

    Article  CAS  Google Scholar 

  60. Petrelli A, Marconi E, Salerno M et al (2013) Nano-volume drop patterning for rapid on-chip neuronal connect-ability assays. Lab Chip 13(22):4419–4429

    Article  CAS  PubMed  Google Scholar 

  61. Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nat Protoc 5:491–502

    Article  CAS  PubMed  Google Scholar 

  62. Marconi E, Nieus T, Maccione A et al (2012) Emergent functional properties of neuronal networks with controlled topology. PLoS One 7(4):e34648. doi:10.1371/journal.pone.0034648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Charrier A, Martinez D, Monette R et al (2010) Cell placement and guidance on substrates for neurochip interfaces. Biotechnol Bioeng 105(2):368–373

    Article  CAS  PubMed  Google Scholar 

  64. Voicu R, Faid K, Farah AA et al (2007) Nanotemplating for two-dimensional molecular imprinting. Langmuir 23(10):5452–5458

    Article  CAS  PubMed  Google Scholar 

  65. Chang JC, Brewer GJ, Wheeler BC (2003) A modified microstamping technique enhances polylysine transfer and neuronal cell patterning. Biomaterials 24:2863–2870

    Article  CAS  PubMed  Google Scholar 

  66. Py C, Martina M, Diaz-Quijada GA et al (2011) From understanding cellular function to novel drug discovery: the role of planar patch-clamp array chip technology. Front Pharmacol 2:51. doi:10.3389/fphar.2011.00051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Ionescu-Zanetti C, Shaw RM, Seo J et al (2005) Mammalian electrophysiology on a microfluidic platform. Proc Natl Acad Sci U S A 102:9112–9117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Bosca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bosca, A., Martina, M., Py, C. (2014). Planar Patch Clamp for Neuronal Networks—Considerations and Future Perspectives. In: Martina, M., Taverna, S. (eds) Patch-Clamp Methods and Protocols. Methods in Molecular Biology, vol 1183. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1096-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1096-0_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1095-3

  • Online ISBN: 978-1-4939-1096-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics