Skip to main content

An Efficient Fluorescent Protein-Based Multifunctional Affinity Purification Approach in Mammalian Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1177))

Abstract

Knowledge of an individual protein’s modifications, binding partners, and localization is essential for understanding complex biological networks. We recently described a fluorescent protein-based (mVenus) multifunctional affinity purification (MAP) tag that can be used both to purify a given protein and determine its localization (Ma et al., Mol Cell Proteomics 11:501–511, 2012). MAP purified protein complexes can be further analyzed to identify binding partners and posttranslational modifications by LC-MS/MS. The MAP approach offers rapid FACS-selection of stable clonal cell lines based on the expression level/fluorescence of the MAP-protein fusion. The MAP tag is highly efficient and shows little variability between proteins. Here we describe the general MAP purification method in detail, and show how it can be applied to a specific protein using the human Cdc14B phosphatase as an example.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030–1032

    Article  CAS  PubMed  Google Scholar 

  2. Burckstummer T, Bennett KL, Preradovic A, Schutze G, Hantschel O, Superti-Furga G, Bauch A (2006) An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat Methods 3:1013–1019

    Article  PubMed  Google Scholar 

  3. Tsai A, Carstens RP (2006) An optimized protocol for protein purification in cultured mammalian cells using a tandem affinity purification approach. Nat Protoc 1:2820–2827

    Article  CAS  PubMed  Google Scholar 

  4. Gloeckner CJ, Boldt K, Schumacher A, Roepman R, Ueffing M (2007) A novel tandem affinity purification strategy for the efficient isolation and characterisation of native protein complexes. Proteomics 7:4228–4234

    Article  CAS  PubMed  Google Scholar 

  5. Glatter T, Wepf A, Aebersold R, Gstaiger M (2009) An integrated workflow for charting the human interaction proteome: insights into the PP2A system. Mol Syst Biol 5:237

    Article  PubMed Central  PubMed  Google Scholar 

  6. Cheeseman IM, Desai A (2005) A combined approach for the localization and tandem affinity purification of protein complexes from metazoans. Sci STKE 2005(266):pl1

    PubMed  Google Scholar 

  7. Kobayashi T, Morone N, Kashiyama T, Oyamada H, Kurebayashi N, Murayama T (2008) Engineering a novel multifunctional green fluorescent protein tag for a wide variety of protein research. PLoS One 3:e3822

    Article  PubMed Central  PubMed  Google Scholar 

  8. Ma H, McLean JR, Chao LF, Mana-Capelli S, Paramasivam M, Hagstrom KA, Gould KL, McCollum D (2012) A highly efficient multifunctional tandem affinity purification approach applicable to diverse organisms. Mol Cell Proteomics 11:501–511

    Article  PubMed Central  PubMed  Google Scholar 

  9. Zhang F, Wang J, Xu J, Zhang Z, Koppetsch BS, Schultz N, Vreven T, Meignin C, Davis I, Zamore PD, Weng Z, Theurkauf WE (2012) UAP56 couples piRNA clusters to the perinuclear transposon silencing machinery. Cell 151:871–884

    Google Scholar 

  10. Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918

    Article  CAS  PubMed  Google Scholar 

  11. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  CAS  PubMed  Google Scholar 

  12. Tagwerker C, Flick K, Cui M, Guerrero C, Dou Y, Auer B, Baldi P, Huang L, Kaiser P (2006) A tandem affinity tag for two-step purification under fully denaturing conditions: application in ubiquitin profiling and protein complex identification combined with in vivocross-linking. Mol Cell Proteomics 5:737–748

    Article  CAS  PubMed  Google Scholar 

  13. Ota K, Kito K, Iemura S, Natsume T, Ito T (2008) A parallel affinity purification method for selective isolation of polyubiquitinated proteins. Proteomics 8:3004–3007

    Article  CAS  PubMed  Google Scholar 

  14. McDonald W, Ohi R, Miyamoto D, Mitchison T, Yates JR III (2002) Comparison of three directly coupled HPLC MS/MS strategies for identification of proteins from complex mixtures: single-dimension LC-MS/MS, 2-phase MudPIT, and 3-phase MudPIT. Int J Mass Spectr 219:245–251

    Article  CAS  Google Scholar 

  15. Roberts-Galbraith RH, Chen JS, Wang J, Gould KL (2009) The SH3 domains of two PCH family members cooperate in assembly of the Schizosaccharomyces pombe contractile ring. J Cell Biol 184:113–127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ma ZQ, Tabb DL, Burden J, Chambers MC, Cox MB, Cantrell MJ, Ham AJ, Litton MD, Oreto MR, Schultz WC, Sobecki SM, Tsui TY, Wernke GR, Liebler DC (2011) Supporting tool suite for production proteomics. Bioinformatics 27:3214–3215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Tabb DL, Fernando CG, Chambers MC (2007) MyriMatch: highly accurate tandem mass spectral peptide identification by multivariate hypergeometric analysis. J Proteome Res 6:654–661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Zhang B, Chambers MC, Tabb DL (2007) Proteomic parsimony through bipartite graph analysis improves accuracy and transparency. J Proteome Res 6:3549–3557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ma ZQ, Dasari S, Chambers MC, Litton MD, Sobecki SM, Zimmerman LJ, Halvey PJ, Schilling B, Drake PM, Gibson BW, Tabb DL (2009) IDPicker 2.0: improved protein assembly with high discrimination peptide identification filtering. J Proteome Res 8:3872–3881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant GM068786 to D.M., NCI T32CA119925 to J.R.M., and Howard Hughes Medical Institute for K.L.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dannel McCollum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ma, H., McLean, J.R., Gould, K.L., McCollum, D. (2014). An Efficient Fluorescent Protein-Based Multifunctional Affinity Purification Approach in Mammalian Cells. In: Giannone, R., Dykstra, A. (eds) Protein Affinity Tags. Methods in Molecular Biology, vol 1177. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1034-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1034-2_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1033-5

  • Online ISBN: 978-1-4939-1034-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics