Skip to main content

Targeted Genome Modification via Triple Helix Formation

  • Protocol
  • First Online:
Cancer Genomics and Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1176))

Abstract

Triplex-forming oligonucleotides (TFOs) are capable of coordinating genome modification in a targeted, site-specific manner, causing mutagenesis or even coordinating homologous recombination events. Here, we describe the use of TFOs such as peptide nucleic acids for targeted genome modification. We discuss this method and its applications and describe protocols for TFO design, delivery, and evaluation of activity in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pauling L, Corey RB (1953) A proposed structure for the nucleic acids. Proc Natl Acad Sci U S A 39(2):84–97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Felsenfeld G, Rich A (1957) Studies on the formation of two- and three-stranded polyribonucleotides. Biochim Biophys Acta 26(3):457–468

    Article  CAS  PubMed  Google Scholar 

  3. Nielsen PE, Egholm M, Buchardt O (1994) Peptide nucleic acid (PNA). A DNA mimic with a peptide backbone. Bioconjug Chem 5(1):3–7

    Article  CAS  PubMed  Google Scholar 

  4. Nielsen PE (1999) Peptide nucleic acid. A molecule with two identities. Acc Chem Res 32(7):624–630

    Article  CAS  Google Scholar 

  5. He G et al (2009) Strand invasion of extended, mixed-sequence B-DNA by gammaPNAs. J Am Chem Soc 131(34):12088–12090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Rapireddy S, Bahal R, Ly DH (2011) Strand invasion of mixed-sequence, double-helical B-DNA by gamma-peptide nucleic acids containing G-clamp nucleobases under physiological conditions. Biochemistry 50(19):3913–3918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Bahal R et al (2012) Sequence-unrestricted, Watson-Crick recognition of double helical B-DNA by (R)-miniPEG-gammaPNAs. Chembiochem 13(1):56–60

    Article  CAS  PubMed  Google Scholar 

  8. Kumar R et al (1998) The first analogues of LNA (locked nucleic acids): phosphorothioate-LNA and 2'-thio-LNA. Bioorg Med Chem Lett 8(16):2219–2222

    Article  CAS  PubMed  Google Scholar 

  9. Koshkin AA et al (1998) LNA (Locked Nucleic Acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 54(14):3607–3630

    Article  CAS  Google Scholar 

  10. Petersen M et al (2000) The conformations of locked nucleic acids (LNA). J Mol Recognit 13(1):44–53

    Article  CAS  PubMed  Google Scholar 

  11. Vester B, Wengel J (2004) LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry 43(42):13233–13241

    Article  CAS  PubMed  Google Scholar 

  12. Egholm M et al (1995) Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA. Nucleic Acids Res 23(2):217–222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Bentin T, Larsen HJ, Nielsen PE (2003) Combined triplex/duplex invasion of double-stranded DNA by “tail-clamp” peptide nucleic acid. Biochemistry 42(47):13987–13995

    Article  CAS  PubMed  Google Scholar 

  14. Kaihatsu K et al (2003) Extending recognition by peptide nucleic acids (PNAs): binding to duplex DNA and inhibition of transcription by tail-clamp PNA-peptide conjugates. Biochemistry 42(47):13996–14003

    Article  CAS  PubMed  Google Scholar 

  15. Lohse J, Dahl O, Nielsen PE (1999) Double duplex invasion by peptide nucleic acid: a general principle for sequence-specific targeting of double-stranded DNA. Proc Natl Acad Sci U S A 96(21):11804–11808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Sazani P et al (2001) Nuclear antisense effects of neutral, anionic and cationic oligonucleotide analogs. Nucleic Acids Res 29(19):3965–3974

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Koppelhus U et al (2008) Improved cellular activity of antisense peptide nucleic acids by conjugation to a cationic peptide-lipid (CatLip) domain. Bioconjug Chem 19(8):1526–1534

    Article  CAS  PubMed  Google Scholar 

  18. Rogers FA et al (2004) Peptide conjugates for chromosomal gene targeting by triplex-forming oligonucleotides. Nucleic Acids Res 32(22):6595–6604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Faria M et al (2000) Targeted inhibition of transcription elongation in cells mediated by triplex-forming oligonucleotides. Proc Natl Acad Sci U S A 97(8):3862–3867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Birg F et al (1990) Inhibition of simian virus 40 DNA replication in CV-1 cells by an oligodeoxynucleotide covalently linked to an intercalating agent. Nucleic Acids Res 18(10):2901–2908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Maher LJ III, Wold B, Dervan PB (1989) Inhibition of DNA binding proteins by oligonucleotide-directed triple helix formation. Science 245(4919):725–730

    Article  CAS  PubMed  Google Scholar 

  22. Havre PA et al (1993) Targeted mutagenesis of DNA using triple helix-forming oligonucleotides linked to psoralen. Proc Natl Acad Sci U S A 90(16):7879–7883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Takasugi M et al (1991) Sequence-specific photo-induced cross-linking of the two strands of double-helical DNA by a psoralen covalently linked to a triple helix-forming oligonucleotide. Proc Natl Acad Sci U S A 88(13):5602–5606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Vasquez KM et al (1996) High-efficiency triple-helix-mediated photo-cross-linking at a targeted site within a selectable mammalian gene. Biochemistry 35(33):10712–10719

    Article  CAS  PubMed  Google Scholar 

  25. Wang G, Seidman MM, Glazer PM (1996) Mutagenesis in mammalian cells induced by triple helix formation and transcription-coupled repair. Science 271(5250):802–805

    Article  CAS  PubMed  Google Scholar 

  26. Chin JY et al (2008) Correction of a splice-site mutation in the beta-globin gene stimulated by triplex-forming peptide nucleic acids. Proc Natl Acad Sci U S A 105(36):13514–13519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Schleifman EB et al (2011) Targeted disruption of the CCR5 gene in human hematopoietic stem cells stimulated by peptide nucleic acids. Chem Biol 18(9):1189–1198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Rogers FA et al (2012) Targeted gene modification of hematopoietic progenitor cells in mice following systemic administration of a PNA-peptide conjugate. Mol Ther 20(1):109–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. McNeer NA et al (2012) Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo. Gene Ther 20(6):658–669

    Article  PubMed Central  PubMed  Google Scholar 

  30. Yin H et al (2010) Optimization of peptide nucleic acid antisense oligonucleotides for local and systemic dystrophin splice correction in the mdx mouse. Mol Ther 18(4):819–827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Roberts J et al (2006) Efficient and persistent splice switching by systemically delivered LNA oligonucleotides in mice. Mol Ther 14(4):471–475

    Article  CAS  PubMed  Google Scholar 

  32. Singhal G et al (2011) DNA triplex-mediated inhibition of MET leads to cell death and tumor regression in hepatoma. Cancer Gene Ther 18(7):520–530

    Article  CAS  PubMed  Google Scholar 

  33. Cogoi S et al (2004) Antiproliferative activity of a triplex-forming oligonucleotide recognizing a Ki-ras polypurine/polypyrimidine motif correlates with protein binding. Cancer Gene Ther 11(7):465–476

    Article  CAS  PubMed  Google Scholar 

  34. Shen C et al (2003) Targeting bcl-2 by triplex-forming oligonucleotide—a promising carrier for gene-radiotherapy. Cancer Biother Radiopharm 18(1):17–26

    Article  PubMed  Google Scholar 

  35. Taniguchi Y, Sasaki S (2012) An efficient antigene activity and antiproliferative effect by targeting the Bcl-2 or survivin gene with triplex forming oligonucleotides containing a W-shaped nucleoside analogue (WNA-betaT). Org Biomol Chem 10(41):8336–8341

    Article  CAS  PubMed  Google Scholar 

  36. Onyshchenko MI et al (2009) Stabilization of G-quadruplex in the BCL2 promoter region in double-stranded DNA by invading short PNAs. Nucleic Acids Res 37(22):7570–7580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Ebbinghaus SW et al (1993) Triplex formation inhibits HER-2/neu transcription in vitro. J Clin Invest 92(5):2433–2439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Rogers FA et al (2002) Site-directed recombination via bifunctional PNA-DNA conjugates. Proc Natl Acad Sci U S A 99(26):16695–16700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Lonkar P et al (2009) Targeted correction of a thalassemia-associated beta-globin mutation induced by pseudo-complementary peptide nucleic acids. Nucleic Acids Res 37(11):3635–3644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. McNeer NA et al (2011) Nanoparticles deliver triplex-forming PNAs for site-specific genomic recombination in CD34+ human hematopoietic progenitors. Mol Ther 19(1):172–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Vasquez KM, Narayanan L, Glazer PM (2000) Specific mutations induced by triplex-forming oligonucleotides in mice. Science 290(5491):530–533

    Article  CAS  PubMed  Google Scholar 

  42. Chin JY, Schleifman EB, Glazer PM (2007) Repair and recombination induced by triple helix DNA. Front Biosci 12:4288–4297

    Article  CAS  PubMed  Google Scholar 

  43. Chin JY, Glazer PM (2009) Repair of DNA lesions associated with triplex-forming oligonucleotides. Mol Carcinog 48(4):389–399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Vasquez KM et al (2002) Human XPA and RPA DNA repair proteins participate in specific recognition of triplex-induced helical distortions. Proc Natl Acad Sci U S A 99(9):5848–5853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Faruqi AF et al (2000) Triple-helix formation induces recombination in mammalian cells via a nucleotide excision repair-dependent pathway. Mol Cell Biol 20(3):990–1000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Datta HJ et al (2001) Triplex-induced recombination in human cell-free extracts. Dependence on XPA and HsRad51. J Biol Chem 276(21):18018–18023

    Article  CAS  PubMed  Google Scholar 

  47. Knauert MP et al (2005) Distance and affinity dependence of triplex-induced recombination. Biochemistry 44(10):3856–3864

    Article  CAS  PubMed  Google Scholar 

  48. Kim KH, Nielsen PE, Glazer PM (2006) Site-specific gene modification by PNAs conjugated to psoralen. Biochemistry 45(1):314–323

    Article  CAS  PubMed  Google Scholar 

  49. Christensen L et al (1995) Solid-phase synthesis of peptide nucleic acids. J Pept Sci 1(3):175–183

    Article  CAS  PubMed  Google Scholar 

  50. Maurisse R et al (2010) Comparative transfection of DNA into primary and transformed mammalian cells from different lineages. BMC Biotechnol 10:9

    Article  PubMed Central  PubMed  Google Scholar 

  51. Luo D et al (1999) Controlled DNA delivery systems. Pharm Res 16(8):1300–1308

    Article  CAS  PubMed  Google Scholar 

  52. Blum JS, Saltzman WM (2008) High loading efficiency and tunable release of plasmid DNA encapsulated in submicron particles fabricated from PLGA conjugated with poly-L-lysine. J Control Release 129(1):66–72

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Woodrow KA et al (2009) Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat Mater 8(6):526–533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Babar IA et al (2012) Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci U S A 109(26):E1695–E1704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Fahmy TM et al (2005) Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting. Biomaterials 26(28):5727–5736

    Article  CAS  PubMed  Google Scholar 

  56. Fields RJ et al (2012) Surface modified poly(beta amino ester)-containing nanoparticles for plasmid DNA delivery. J Control Release 164(1):41–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Vasquez KM et al (1999) Chromosomal mutations induced by triplex-forming oligonucleotides in mammalian cells. Nucleic Acids Res 27(4):1176–1181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Gunther EJ et al (1995) Mutagenesis by 8-methoxypsoralen and 5-methylangelicin photoadducts in mouse fibroblasts: mutations at cross-linkable sites induced by offoadducts as well as cross-links. Cancer Res 55(6):1283–1288

    CAS  PubMed  Google Scholar 

  59. Schleifman EB, Chin JY, Glazer PM (2008) Triplex-mediated gene modification. Methods Mol Biol 435:175–190

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Glazer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ricciardi, A.S., McNeer, N.A., Anandalingam, K.K., Saltzman, W.M., Glazer, P.M. (2014). Targeted Genome Modification via Triple Helix Formation. In: Wajapeyee, N. (eds) Cancer Genomics and Proteomics. Methods in Molecular Biology, vol 1176. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0992-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0992-6_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0991-9

  • Online ISBN: 978-1-4939-0992-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics