Skip to main content

Using LacO Arrays to Monitor DNA Double-Strand Break Dynamics in Live Schizosaccharomyces pombe Cells

  • Protocol
  • First Online:
Cancer Genomics and Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1176))

Abstract

LacO arrays, when combined with LacI-GFP, have been a valuable tool for studying nuclear architecture and chromatin dynamics. Here, we outline an experimental approach to employ the LacO/LacI-GFP system in S. pombe to assess DNA double-strand break (DSB) dynamics and the contribution of chromatin state to DSB repair. Previously, integration of long, highly repetitive LacO arrays in S. pombe has been a challenge. To address this problem, we have developed a novel approach, based on the principles used for homologous recombination-based genome engineering in higher eukaryotes, to integrate long, repetitive LacO arrays with targeting efficiencies as high as 70 %. Combining this facile LacO/LacI-GFP system with a site-specific, inducible DSB provides a means to monitor DSB dynamics at engineered sites within the genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability–an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11:220–228

    Article  CAS  PubMed  Google Scholar 

  2. Szostak JW, Orr-Weaver TL, Rothstein RJ et al (1983) The double-strand-break repair model for recombination. Cell 33:25–35

    Article  CAS  PubMed  Google Scholar 

  3. Barzel A, Kupiec M (2008) Finding a match: how do homologous sequences get together for recombination? Nat Rev Genet 9:27–37

    Article  CAS  PubMed  Google Scholar 

  4. Gehlen LR, Gasser SM, Dion V (2011) How broken DNA finds its template for repair: a computational approach. Prog Theor Phys Suppl 191:20–29

    Article  CAS  Google Scholar 

  5. Dion V, Gasser SM (2013) Chromatin movement in the maintenance of genome stability. Cell 152:1355–1364

    Article  CAS  PubMed  Google Scholar 

  6. Haber JE (2012) Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics 191:33–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Goodarzi AA, Noon AT, Deckbar D et al (2008) ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell 31:167–177

    Article  CAS  PubMed  Google Scholar 

  8. Chiolo I, Minoda A, Colmenares SU et al (2011) Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144: 732–744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. van Attikum H, Fritsch O, Hohn B et al (2004) Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119:777–788

    Article  PubMed  Google Scholar 

  10. Costelloe T, Louge R, Tomimatsu N et al (2012) The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection. Nature 489:581–584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Nagai S, Dubrana K, Tsai-Pflugfelder M et al (2008) Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science 322: 597–602

    Google Scholar 

  12. Chen X, Cui D, Papusha A et al (2012) The Fun30 nucleosome remodeller promotes resection of DNA double-strand break ends. Nature 489:576–580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Grewal SIS, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8:35–46

    Article  CAS  PubMed  Google Scholar 

  14. van der Oost J (2013) Molecular biology. New tool for genome surgery. Science 339:768–770

    Google Scholar 

  15. Rose MD, Winston FM, Heiter P (1990) Methods in yeast genetics: a laboratory course manual, Cold Spring Harbor Laboratory Protocols. Cold Spring Harbor, NY

    Google Scholar 

  16. Du L-L, Nakamura TM, Moser BA et al (2003) Retention but not recruitment of Crb2 at double-strand breaks requires Rad1 and Rad3 complexes. Mol Cell Biol 23:6150–6158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194: 795–823

    Article  CAS  PubMed  Google Scholar 

  18. Rohner S, Gasser SM, Meister P (2008) Modules for cloning-free chromatin tagging in Saccharomyces cerevisiae. Yeast 25:235–239

    Article  CAS  PubMed  Google Scholar 

  19. Straight AF, Belmont AS, Robinett CC et al (1996) GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr Biol 6:1599–1608

    Article  CAS  PubMed  Google Scholar 

  20. Robinett CC, Straight A, Li G et al (1996) In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol 135:1685–1700

    Article  CAS  PubMed  Google Scholar 

  21. Belmont AS (2001) Visualizing chromosome dynamics with GFP. Trends Cell Biol 11: 250–257

    Article  CAS  PubMed  Google Scholar 

  22. Bähler J, Wu JQ, Longtine MS et al (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14:943–951

    Article  PubMed  Google Scholar 

  23. Pâques F, Haber JE (1997) Two pathways for removal of nonhomologous DNA ends during double-strand break repair in Saccharomyces cerevisiae. Mol Cell Biol 17:6765–6771

    PubMed Central  PubMed  Google Scholar 

  24. Basi G, Schmid E, Maundrell K (1993) TATA box mutations in the Schizosaccharomyces pombe nmt1 promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene 123: 131–136

    Article  CAS  PubMed  Google Scholar 

  25. Jovtchev G, Watanabe K, Pecinka A et al (2008) Size and number of tandem repeat arrays can determine somatic homologous pairing of transgene loci mediated by epigenetic modifications in Arabidopsis thaliana nuclei. Chromosoma 117:267–276

    Article  PubMed  Google Scholar 

  26. Towbin BD, Meister P, Pike BL et al (2010) Repetitive transgenes in C. elegans accumulate heterochromatic marks and are sequestered at the nuclear envelope in a copy-number- and lamin-dependent manner. Cold Spring Harb Symp Quant Biol 75:555–565

    Article  CAS  PubMed  Google Scholar 

  27. Nabeshima K, Kurooka H, Takeuchi M et al (1995) p93dis1, which is required for sister chromatid separation, is a novel microtubule and spindle pole body-associating protein phosphorylated at the Cdc2 target sites. Genes Dev 9:1572–1585

    Article  CAS  PubMed  Google Scholar 

  28. Nabeshima K, Nakagawa T, Straight AF et al (1998) Dynamics of centromeres during metaphase-anaphase transition in fission yeast: Dis1 is implicated in force balance in metaphase bipolar spindle. Mol Biol Cell 9: 3211–3225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hayles J, Nurse P (1992) Genetics of the fission yeast Schizosaccharomyces pombe. Annu Rev Genet 26:373–402

    Article  CAS  PubMed  Google Scholar 

  30. Siam R, Dolan WP, Forsburg SL (2004) Choosing and using Schizosaccharomyces pombe plasmids. Methods 33:189–198

    Google Scholar 

  31. Sunder S, Greeson-Lott NT, Runge KW et al (2012) A new method to efficiently induce a site-specific double-strand break in the fission yeast Schizosaccharomyces pombe. Yeast 29:275–291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Watson AT, Werler P, Carr AM (2011) Regulation of gene expression at the fission yeast Schizosaccharomyces pombe urg1 locus. Gene 484:75–85

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Gasser lab and Russell labs for providing plasmids. This work was supported by the G. Harold and Leila Y. Mathers Charitable Foundation and the Searle Scholar Program (to M.C.K) and an NIGMS training grant T32GM007223 (to B.A.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan C. King .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Leland, B.A., King, M.C. (2014). Using LacO Arrays to Monitor DNA Double-Strand Break Dynamics in Live Schizosaccharomyces pombe Cells. In: Wajapeyee, N. (eds) Cancer Genomics and Proteomics. Methods in Molecular Biology, vol 1176. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0992-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0992-6_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0991-9

  • Online ISBN: 978-1-4939-0992-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics