Skip to main content

A Novel Extraction Protocol to Probe the Role of Cholesterol in Synaptic Vesicle Recycling

  • Protocol
  • First Online:
Exocytosis and Endocytosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1174))

Abstract

Cholesterol helps to stabilize membrane fluidity and many membrane proteins interact with cholesterol and are functionally clustered in cholesterol rich “rafts.” Synaptic vesicle (SV) membranes are enriched in cholesterol in comparison to other organelles. Attempts to study the function of this high cholesterol content have been hampered by the inability to extract cholesterol from SVs in live presynaptic terminals. Here, we describe a method to extract vesicular cholesterol using a temperature-sensitive Drosophila dynamin mutant, shibire-ts1 (shi), to trap SVs on the plasma membrane. Trapped SVs are more accessible to cholesterol extraction by the cholesterol chelator, methyl-β-cyclodextrin (MβCD). This method can likely be extended to extract other lipids from SVs and could also be used to add lipids. We speculate that this method could be used on mammalian preparations in conjunction with dynamin inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takamori S, Holt M, Stenius K et al (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    Article  CAS  PubMed  Google Scholar 

  2. Huang X, Warren JT, Buchanan J et al (2007) Drosophila Niemann-Pick type C-2 genes control sterol homeostasis and steroid biosynthesis: a model of human neurodegenerative disease. Development 134:3733–3742

    Article  CAS  PubMed  Google Scholar 

  3. Shreve SM, Yi SX, Lee RE Jr (2007) Increased dietary cholesterol enhances cold tolerance in Drosophila melanogaster. Cryo Lett 28:33–37

    CAS  Google Scholar 

  4. Wasser CR, Ertunc M, Liu X, Kavalali ET (2007) Cholesterol-dependent balance between evoked and spontaneous synaptic vesicle recycling. J Physiol 579:413–429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Linetti A, Fratangeli A, Taverna E et al (2010) Cholesterol reduction impairs exocytosis of synaptic vesicles. J Cell Sci 123:595–605

    Article  CAS  PubMed  Google Scholar 

  6. Zamir O, Charlton MP (2006) Cholesterol and synaptic transmitter release at crayfish neuromuscular junctions. J Physiol 571:83–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Smith AJ, Sugita S, Charlton MP (2010) Cholesterol-dependent kinase activity regulates transmitter release from cerebellar synapses. J Neurosci 30:6116–6121

    Article  CAS  PubMed  Google Scholar 

  8. Dason JS, Smith AJ, Marin L, Charlton MP (2010) Vesicular sterols are essential for synaptic vesicle cycling. J Neurosci 30:15856–15865

    Article  CAS  PubMed  Google Scholar 

  9. Koenig JH, Ikeda K (1989) Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J Neurosci 9:3844–3860

    CAS  PubMed  Google Scholar 

  10. Macleod GT, Marin L, Charlton MP, Atwood HL (2004) Synaptic vesicles: test for a role in presynaptic calcium regulation. J Neurosci 24:2496–2505

    Article  CAS  PubMed  Google Scholar 

  11. Dason JS, Smith AJ, Marin L, Charlton MP (2014) Cholesterol and F-actin are required for clustering of recycling synaptic vesicle proteins in the presynaptic plasma membrane. J Physiol 592:621–633

    Google Scholar 

  12. Grigliatti TA, Hall L, Rosenbluth R, Suzuki DT (1973) Temperature-sensitive mutations in Drosophila melanogaster. XIV. A selection of immobile adults. Mol Gen Genet 120:104–114

    Article  Google Scholar 

  13. Poskanzer KE, Marek KW, Sweeney ST, Davis GW (2003) Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo. Nature 426:559–563

    Article  CAS  PubMed  Google Scholar 

  14. Miesenböck G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195

    Article  PubMed  Google Scholar 

  15. Macleod GT, Hegstrom-Wojtowicz M, Charlton MP, Atwood HL (2002) Fast calcium signals in Drosophila motor neuron terminals. J Neurophysiol 88:2659–2663

    Article  CAS  PubMed  Google Scholar 

  16. Verstreken P, Ohyama T, Bellen HJ (2008) FM 1-43 labeling of synaptic vesicle pools at the Drosophila neuromuscular junction. Methods Mol Biol 440:349–369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kay AR, Alfonso A, Alford S et al (1999) Imaging synaptic activity in intact brain and slices with FM1-43 in C. elegance, lamprey, and rat. Neuron 24:809–817

    Article  CAS  PubMed  Google Scholar 

  18. Rietveld A, Neutz S, Simons K, Eaton S (1999) Association of sterol- and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains. J Biol Chem 274:12049–12054

    Article  CAS  PubMed  Google Scholar 

  19. Phillips SE, Woodruff EA 3rd, Liang P et al (2008) Neuronal loss of Drosophila NPC1a causes cholesterol aggregation and age-progressive neurodegeneration. J Neurosci 28:6569–6582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Behmer ST, Nes WD (2003) Insect sterol nutrition and physiology: a global perspective. Adv Insect Physiol 31:1–72

    Article  CAS  Google Scholar 

  21. Macia E, Ehrlich M, Massol R et al (2006) Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 10:839–850

    Article  CAS  PubMed  Google Scholar 

  22. Newton AJ, Kirchhausen T, Murthy VN (2006) Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. Proc Natl Acad Sci U S A 103:17955–17960

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Rodal AA, Blunk AD, Akbergenova Y et al (2011) A presynaptic endosomal trafficking pathway controls synaptic growth signaling. J Cell Biol 193:201–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Douthitt HL, Luo F, McCann SD, Meriney SD (2011) Dynasore, an inhibitor of dynamin, increases the probability of transmitter release. Neuroscience 172:187–195

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from CIHR, Canada MOP-82827 (M.P.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey S. Dason .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dason, J.S., Charlton, M.P. (2014). A Novel Extraction Protocol to Probe the Role of Cholesterol in Synaptic Vesicle Recycling. In: Ivanov, A. (eds) Exocytosis and Endocytosis. Methods in Molecular Biology, vol 1174. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0944-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0944-5_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0943-8

  • Online ISBN: 978-1-4939-0944-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics