Skip to main content

Isolation and Characterization of Ice-Binding Proteins from Higher Plants

  • Protocol
  • First Online:
Plant Cold Acclimation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1166))

Abstract

The characterization of ice-binding proteins from plants can involve many techniques, only a few of which are presented here. Chief among these methods are tests for ice recrystallization inhibition activity. Two distinct procedures are described; neither is normally used for precise quantitative assays. Thermal hysteresis assays are used for quantitative studies but are also useful for ice crystal morphologies, which are important for the understanding of ice-plane binding. Once the sequence of interest is cloned, recombinant expression, necessary to verify ice-binding protein identity can present challenges, and a strategy for recovery of soluble, active protein is described. Lastly, verification of function in planta borrows from standard protocols, but with an additional screen applicable to ice-binding proteins. Here we have attempted to assist researchers wishing to isolate and characterize ice-binding proteins from plants with a few methods critical to success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu W, Liu M, Shen X, Lu C (2005) Expression of a carrot 36 kD antifreeze protein gene improves cold stress tolerance in transgenic tobacco. Forest Stud China 7:11–16

    Article  Google Scholar 

  2. Knight CA, Wen D, Laursen RA (1995) Nonequilibrium antifreeze peptides and the recrystallization of ice. Cryobiology 32:23–34

    Article  CAS  PubMed  Google Scholar 

  3. Sidebottom C, Buckley S, Pudney P, Twigg S, Jarman C, Holt C, Telford J, McArthur A, Worrall D, Hubbard R, Lillford P (2000) Heat-stable antifreeze protein from grass. Nature 406:256

    Article  CAS  PubMed  Google Scholar 

  4. Urrutia ME, Duman JG, Knight CA (1992) Plant thermal hysteresis proteins. Biochim Biophys Acta 1121:199–206

    Article  CAS  PubMed  Google Scholar 

  5. Duman JG (1994) Purification and characterization of a thermal hysteresis protein from a plant, the bittersweet nightshade Solanum dulcamara. Biochim Biophys Acta 1206:129–135

    Article  CAS  PubMed  Google Scholar 

  6. Hon W-C, Griffith M, Chong P, Yang DSC (1994) Extraction and isolation of antifreeze proteins from winter rye (Secale cereale L.) leaves. Plant Physiol 104:971–980

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Huang T, Duman JG (1995) Purification and characterization of thermal hysteresis protein from cold-acclimated kale, Brassica oleracea. Cryobiology 32:577–581

    Google Scholar 

  8. Griffith M, Antikainen M, Hon W-C, Pihakaski-Maunsbach K, Yu X-M, Chun YU, Yang SC (1997) Antifreeze proteins in winter rye. Physiol Plant 100:327–332

    Article  CAS  Google Scholar 

  9. Lu CF, Wang H, Jian LC, Kuang TY (1998) Progress in study of plant antifreeze proteins. Progr Biochem Biophys 25:210–216

    CAS  Google Scholar 

  10. Hoshino T, Odaira M, Yoshida M, Tsuda S (1992) Physiological and biochemical significance of antifreeze substances in plants. J Plant Res 112:255–261

    Article  Google Scholar 

  11. Worrall D, Elias L, Ashford D, Smallwood M, Sidebottom C, Lillford P, Telford J, Holt C, Bowles D (1998) A carrot leucine-rich-repeat protein that inhibits ice recrystallization. Science 282:115–117

    Article  CAS  PubMed  Google Scholar 

  12. Aticia Ö, Nalbantoğlu B (2003) Antifreeze proteins in higher plants. Phytochemistry 64:1187–1196

    Google Scholar 

  13. Wang W, Wei L, Wang G (2003) Multistep purification of an antifreeze protein from Ammopiptanthus mongolicus by chromatographic and electrophoretic methods. J Chromat Sci 41:489–493

    Article  CAS  Google Scholar 

  14. Moffatt B, Ewart V, Eastman A (2006) Cold comfort: plant antifreeze proteins. Physiol Plant 126:5–16

    Article  CAS  Google Scholar 

  15. Zhang C, Zhang H, Wang L, Zhang J, Yao H (2007) Purification of antifreeze protein from wheat bran (Triticum aestivum L.) based on its hydrophilicity and ice-binding capacity. J Agric Food Chem 55:7654–7658

    Article  CAS  PubMed  Google Scholar 

  16. Cai Y, Liu S, Liao X, Ding Y, Sun J, Zhang D (2011) Purification and partial characterization of antifreeze proteins from leaves of Ligustrum lucidum Ait. Food Bioprod Process 89:98–102

    Article  CAS  Google Scholar 

  17. Gupta R, Deswal R (2012) Low temperature stress modulated secretome analysis and purification of antifreeze protein from Hippophae rhamnoides, a Himalayan wonder plant. J Proteome Res 11:2684–2696

    Article  CAS  PubMed  Google Scholar 

  18. Lauersen KJ, Brown A, Middleton A, Davies PL, Walker VK (2011) Expression and characterization of an antifreeze protein from the perennial rye grass, Lolium perenne. Cryobiology 62:194–201

    Article  CAS  PubMed  Google Scholar 

  19. Tomczak MM, Marshall CB, Gilbert JA, Davies PL (2003) A facile method for determining ice recrystallization inhibition by antifreeze proteins. Biochem Biophys Res Commun 311:1041–1046

    Article  CAS  PubMed  Google Scholar 

  20. Scotter AJ, Marshall CB, Graham LA, Gilbert JA, Garnham CP, Davies PL (2006) The basis for hyperactivity of antifreeze proteins. Cryobiology 53:229–239

    Article  CAS  PubMed  Google Scholar 

  21. Takamichi M, Nishimiya Y, Miura A, Tsuda S (2007) Effect of annealing time of an ice crystal on the activity of type III antifreeze protein. FEBS J 274:6469–6476

    Article  CAS  PubMed  Google Scholar 

  22. Bar-Dolev M, Celik Y, Wettlaufer JS, Davies PL, Braslavsky I (2012) New insights into ice growth and melting modifications by antifreeze proteins. J R Soc Interface 9:3249–3259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Qin W, Tyshenko MG, Doucet D, Walker VK (2006) Characterization of antifreeze protein gene expression in summer spruce budworm larvae. Insect Biochem Mol Biol 36:210–218

    Article  CAS  PubMed  Google Scholar 

  24. Loughran ST, Wells D (2011) Purification of poly-histidine-tagged proteins. In protein chromatography: methods and protocols. Meth Mol Biol 681:311–335

    Article  CAS  Google Scholar 

  25. Middleton AJ, Marshall CB, Faucher F, Bar-Dolev M, Braslavsky I, Campbell RL, Walker VK, Davies PL (2012) Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site. J Mol Biol 416:713–724

    Article  CAS  PubMed  Google Scholar 

  26. Bent A (2006) Arabidopsis thaliana flora dip transformation method. In agrobacterium protocols. Meth Mol Biol 243:87–104

    Google Scholar 

  27. Møller HJ, Poulsen JH (2009) Staining of glycoproteins/proteoglycans on SDS gels. The protein protocols handbook. Springer Protocols Handbooks, Collana, pp 569–574

    Book  Google Scholar 

  28. Jin S, Song YN, Deng WY, Gordon MP, Nester EW (1993) The regulatory VirA protein of Agrobacterium tumefaciens does not function at elevated temperatures. J Bacteriol 175:6830–6835

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. M. Kuiper, along with many undergraduate students who have participated in data collection and “trouble-shooting” these techniques over the years. The research was supported by a CIHR and NSERC (Canada) grants to PLD and VKW, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia K. Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Middleton, A.J., Vanderbeld, B., Bredow, M., Tomalty, H., Davies, P.L., Walker, V.K. (2014). Isolation and Characterization of Ice-Binding Proteins from Higher Plants. In: Hincha, D., Zuther, E. (eds) Plant Cold Acclimation. Methods in Molecular Biology, vol 1166. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0844-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0844-8_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0843-1

  • Online ISBN: 978-1-4939-0844-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics