Skip to main content

Optochemical Activation of Kinase Function in Live Cells

  • Protocol
  • First Online:
Book cover Photoswitching Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1148))

Abstract

Manipulation of protein kinase activity is widely used to dissect signaling pathways controlling physiological and pathological processes. Common methods often cannot provide the desired spatial and temporal resolution in control of kinase activity. Regulation of kinase activity by photocaged kinase inhibitors has been successfully used to achieve tight temporal and local control, but inhibitors are limited to inactivation of kinases and often do not provide the desired specificity. Here we report detailed methods for light-mediated activation of kinases in living cells using engineered rapamycin-regulated kinases in conjunction with a photocaged analog of rapamycin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bishop AC, Buzko O, Shokat KM (2001) Magic bullets for protein kinases. Trends Cell Biol 11:167–172

    Article  CAS  PubMed  Google Scholar 

  2. Spencer DM, Wandless TJ, Schreiber SL, Crabtree GR (1993) Controlling signal transduction with synthetic ligands. Science 262: 1019–1024

    Article  CAS  PubMed  Google Scholar 

  3. Qiao Y, Molina H, Pandey A, Zhang J, Cole PA (2006) Chemical rescue of a mutant enzyme in living cells. Science 311:1293–1297

    Article  CAS  PubMed  Google Scholar 

  4. Karginov AV, Ding F, Kota P, Dokholyan NV, Hahn KM (2010) Engineered allosteric activation of kinases in living cells. Nat Biotechnol 28:743–747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Karginov AV, Hahn KM (2011) Allosteric activation of kinases: design and application of RapR kinases. Curr Protoc Cell Biol Chapter 14: Unit 14. 13

    Google Scholar 

  6. Dagliyan O, Shirvanyants D, Karginov AV, Ding F, Fee L, Chandrasekaran SN, Freisinger CM, Smolen GA, Huttenlocher A, Hahn KM, Dokholyan NV (2013) Rational design of a ligand-controlled protein conformational switch. Proc Natl Acad Sci U S A 110:6800–6804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Karginov AV, Zou Y, Shirvanyants D, Kota P, Dokholyan NV, Young DD, Hahn KM, Deiters A (2010) Light regulation of protein dimerization and kinase activity in living cells using photocaged rapamycin and engineered FKBP. J Am Chem Soc 133:420–423

    Article  PubMed Central  PubMed  Google Scholar 

  8. Riggsbee CW, Deiters A (2010) Recent advances in the photochemical control of protein function. Trends Biotechnol 28:468–475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Mayer G, Heckel A (2006) Biologically active molecules with a “light switch”. Angew Chem Int Ed Engl 45:4900–4921

    Article  CAS  PubMed  Google Scholar 

  10. Young DD, Deiters A (2007) Photochemical control of biological processes. Org Biomol Chem 5:999–1005

    Article  CAS  PubMed  Google Scholar 

  11. Deiters A (2010) Principles and applications of the photochemical control of cellular processes. Chembiochem 11:47–53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Deiters A (2009) Light activation as a method of regulating and studying gene expression. Curr Opin Chem Biol 13:678–686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Tang X, Dmochowski IJ (2007) Regulating gene expression with light-activated oligonucleotides. Mol Biosyst 3:100–110

    Article  PubMed  Google Scholar 

  14. Lawrence DS (2005) The preparation and in vivo applications of caged peptides and proteins. Curr Opin Chem Biol 9:570–575

    Article  CAS  PubMed  Google Scholar 

  15. Curley K, Lawrence DS (1999) Light-activated proteins. Curr Opin Chem Biol 3:84–88

    Article  CAS  PubMed  Google Scholar 

  16. Lee HM, Larson DR, Lawrence DS (2009) Illuminating the chemistry of life: design, synthesis, and applications of “caged” and related photoresponsive compounds. ACS Chem Biol 4:409–427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Dorman G, Prestwich GD (2000) Using photolabile ligands in drug discovery and development. Trends Biotechnol 18:64–77

    Article  CAS  PubMed  Google Scholar 

  18. Adams SR, Tsien RY (1993) Controlling cell chemistry with caged compounds. Annu Rev Physiol 55:755–784

    Article  CAS  PubMed  Google Scholar 

  19. Dong Q, Svoboda K, Tiersch TR, Monroe WT (2007) Photobiological effects of UVA and UVB light in zebrafish embryos: evidence for a competent photorepair system. J Photochem Photobiol B 88:137–146

    Article  CAS  PubMed  Google Scholar 

  20. Schindl A, Klosner G, Honigsmann H, Jori G, Calzavara-Pinton PC, Trautinger F (1998) Flow cytometric quantification of UV-induced cell death in a human squamous cell carcinoma-derived cell line: dose and kinetic studies. J Photochem Photobiol B 44:97–106

    Article  CAS  PubMed  Google Scholar 

  21. Robert C, Muel B, Benoit A, Dubertret L, Sarasin A, Stary A (1996) Cell survival and shuttle vector mutagenesis induced by ultraviolet A and ultraviolet B radiation in a human cell line. J Invest Dermatol 106:721–728

    Article  CAS  PubMed  Google Scholar 

  22. Lyons PD, Dunty JM, Schaefer EM, Schaller MD (2001) Inhibition of the catalytic activity of cell adhesion kinase beta by protein-tyrosine phosphatase-PEST-mediated dephosphorylation. J Biol Chem 276:24422–24431

    Article  CAS  PubMed  Google Scholar 

  23. Lusic H, Deiters A (2006) A New photocaging group for aromatic N-heterocycles. Synthesis 8:2147–2150

    Google Scholar 

Download references

Acknowledgments

Dr. Karginov, Dr. Hahn, and Dr. Deiters were supported by the NIH (R21 RCA159179A to AVK, R01 GM057464 to KMH, and R01 GM079114 to AD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Deiters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Karginov, A.V., Hahn, K.M., Deiters, A. (2014). Optochemical Activation of Kinase Function in Live Cells. In: Cambridge, S. (eds) Photoswitching Proteins. Methods in Molecular Biology, vol 1148. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0470-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0470-9_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0469-3

  • Online ISBN: 978-1-4939-0470-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics