Skip to main content

Biofilm-Growing Bacteria Involved in the Corrosion of Concrete Wastewater Pipes: Protocols for Comparative Metagenomic Analyses

  • Protocol
  • First Online:
Book cover Microbial Biofilms

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1147))

Abstract

Advances in high-throughput next-generation sequencing (NGS) technology for direct sequencing of environmental DNA (i.e., shotgun metagenomics) are transforming the field of microbiology. NGS technologies are now regularly being applied in comparative metagenomic studies, which provide the data for functional annotations, taxonomic comparisons, community profile, and metabolic reconstructions. For example, comparative metagenomic analysis of corroded pipes unveiled novel insights on the bacterial populations associated with the sulfur and nitrogen cycle, which may be directly or indirectly implicated in concrete wastewater pipe corrosion. The objective of this chapter is to describe the steps involved in the taxonomic and functional analysis of metagenome datasets from biofilm involved in microbial-induced concrete corrosion (MICC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. USEPA (United States Environmental Protection Agency) (2009) State of technology review report on rehabilitation of wastewater collection and water distribution systems. Office of Research and Development, Cincinnati, OH, EPA/600/R-09/048

    Google Scholar 

  2. USEPA (United States Environmental Protection Agency) (2002) State of technology review report on rehabilitation of wastewater collection and water distribution systems. USEPA Urban Watershed Management Branch, Edison, NJ, EPA/600/JA-02/226

    Google Scholar 

  3. Mori T, Nonaka T, Tazaki K et al (1992) Interactions of nutrients, moisture, and pH on microbial corrosion of concrete sewer pipes. Water Res 26:29–37

    Article  CAS  Google Scholar 

  4. Vollertsen J, Nielsen AH, Jensen HS et al (2008) Corrosion of concrete sewers—the kinetics of hydrogen sulfide oxidation. Sci Total Environ 394:162–170

    Article  PubMed  CAS  Google Scholar 

  5. Zhang L, De Schryver P, De Gusseme B et al (2008) Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review. Water Res 42:1–12

    Article  PubMed  CAS  Google Scholar 

  6. Vincke E, Boon N, Verstraete W (2001) Analysis of the microbial communities on corroded concrete sewer pipes—a case study. Appl Microbiol Biotechnol 57:776–785

    Article  PubMed  CAS  Google Scholar 

  7. Okabe S, Ito T, Satoh H (2003) Sulfate-reducing bacterial community structure and their contribution to carbon mineralization in a wastewater biofilm growing under microaerophilic conditions. Appl Microbiol Biotechnol 63:322–334

    Article  PubMed  CAS  Google Scholar 

  8. Okabe S, Odagiri M, Ito T, Satoh H (2007) Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Appl Environ Microbiol 73:971–980

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Satoh H, Odagiri M, Ito T, Okabe S (2009) Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system. Water Res 43:4729–4739

    Article  PubMed  CAS  Google Scholar 

  10. Santo Domingo JW, Revetta RP, Iker B et al (2011) Molecular survey of concrete sewer biofilm microbial communities. Biofouling 27:993–1001

    Article  PubMed  CAS  Google Scholar 

  11. Jones WJ (2010) High-throughput sequencing and metagenomics. Estuaries Coasts 33:944–952

    Article  Google Scholar 

  12. Simon C, Daniel R (2009) Achievements and new knowledge unraveled by metagenomic approaches. Appl Microbiol Biotechnol 85:265–276

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Gilbert JA, Meyer F, Bailey MJ (2011) The future of microbial metagenomics (or is ignorance bliss?). ISME J 5:777–779

    Article  PubMed Central  PubMed  Google Scholar 

  14. Thomas T, Gilbert J, Meyer F (2012) Metagenomics—a guide from sampling to data analysis. Microb Inform Exp 2:3

    Article  PubMed Central  PubMed  Google Scholar 

  15. Shokralla S, Spall JL, Gibson JF, Hajibabaei M (2012) Next-generation sequencing technologies for environmental DNA research. Mol Ecol 21:1794–1805

    Article  PubMed  CAS  Google Scholar 

  16. Meyer F, Paarmann D, D'Souza M et al (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Sun S, Chen J, Li W et al (2011) Community cyberinfrastructure for advanced microbial ecology research and analysis: the CAMERA resource. Nucleic Acids Res 39:D546–D551

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Markowitz VM, Chen I-MA, Chu K et al (2012) IMG/M: the integrated metagenome data management and comparative analysis system. Nucleic Acids Res 40:D123–D129

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Gerlach W, Jünemann S, Tille F et al (2009) WebCARMA: a web application for the functional and taxonomic classification of unassembled metagenomic reads. BMC Bioinformatics 10:430

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Huson DH, Mitra S, Ruscheweyh H-J et al (2011) Integrative analysis of environmental sequences using MEGAN4. Genome Res 21:1552–1560

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Parks DH, Beiko RG (2010) Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26:715–721

    Article  PubMed  CAS  Google Scholar 

  23. Prakash T, Taylor TD (2012) Functional assignment of metagenomic data: challenges and applications. Brief Bioinform 13:711–727

    Article  PubMed Central  PubMed  Google Scholar 

  24. Gomez-Alvarez V, Revetta RP, Santo Domingo JW (2012) Metagenome analyses of corroded concrete wastewater pipe biofilms reveal a complex microbial system. BMC Microbiol 12:122

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Prosser JI (2010) Replicate or lie. Environ Microbiol 12:1806–1810

    Article  PubMed  CAS  Google Scholar 

  26. Lennon JT (2011) Replication, lies and lesser-known truths regarding experimental design in environmental microbiology. Environ Microbiol 13:1383–1386

    Article  PubMed  Google Scholar 

  27. Gomez-Alvarez V, Teal TK, Schmidt TM (2009) Systematic artifacts in metagenomes from complex microbial communities. ISME J 3:1314–1317

    Article  PubMed  Google Scholar 

  28. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    PubMed Central  PubMed  CAS  Google Scholar 

  29. De Filippo C, Ramazzotti M, Fontana P, Cavalieri D (2012) Bioinformatic approaches for functional annotation and pathway inference in metagenomics data. Brief Bioinform 13:696–710

    Article  PubMed Central  PubMed  Google Scholar 

  30. Li W (2009) Analysis and comparison of very large metagenomes with fast clustering and functional annotation. BMC Bioinformatics 10:359–367

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 11:485

    Google Scholar 

  33. Huse SM, Huber JA, Morrison HG et al (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8:R143

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Keegan KP, Trimble WL, Wilkening J et al (2012) A platform-independent method for detecting errors in metagenomic sequencing data: DRISEE. PLoS Comput Biol 8:e1002541

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Gomez-Alvarez V, Revetta RP, Santo Domingo JW (2012) Metagenomic analyses of drinking water receiving different disinfection treatments. Appl Environ Microbiol 78:6095–6102

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Bengtsson J, Hartmann M, Unterseher M et al (2012) Megraft: a software package to graft ribosomal small subunit (16S/18S) fragments onto full-length sequences for accurate species richness and sequencing depth analysis in pyrosequencing-length metagenomes and similar environmental datasets. Res Microbiol 163:407–412

    Article  PubMed  CAS  Google Scholar 

  37. Bengtsson J, Eriksson KM, Hartmann M et al (2011) Metaxa: a software tool for automated detection and discrimination among ribosomal small subunit (12S/16S/18S) sequences of archaea, bacteria, eukaryotes, mitochondria, and chloroplasts in metagenomes and environmental sequencing datasets. Antonie Van Leeuwenhoek 100:471–475

    Article  PubMed  Google Scholar 

  38. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Beszteri B, Temperton B, Frickenhaus S, Giovannoni SJ (2010) Average genome size: a potential source of bias in comparative metagenomics. ISME J 4:1075–1077

    Article  PubMed  Google Scholar 

  40. Raes J, Korbel JO, Lercher MJ et al (2007) Prediction of effective genome size in metagenomic samples. Genome Biol 8:R10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Frank JA, Sørensen SJ (2011) Quantitative metagenomic analyses based on average genome size normalization. Appl Environ Microbiol 77:2513–2521

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Mitra S, Rupek P, Richter DC et al (2011) Functional analysis of metagenomes and metatranscriptomes using SEED and KEGG. BMC Bioinformatics 12:S21

    Article  PubMed Central  PubMed  Google Scholar 

  43. Gill SR, Pop M, Deboy RT et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Michie MG (1982) Use of the Bray-Curtis similarity measure in cluster analysis of foraminiferal data. Math Geol 14:661–667

    Article  Google Scholar 

  45. Wickelmaier F (2003) An introduction to MDS: reports from the Sound Quality Research Unit (SQRU) No. 7, 1–26. http://homepages.uni-tuebingen.de/florian.wickelmaier/pubs/Wickelmaier2003SQRU.pdf

  46. McKenna JE (2003) An enhanced cluster analysis program with bootstrap significance testing for ecological community analysis. Environ Model Software 18:205–220

    Article  Google Scholar 

  47. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Article  Google Scholar 

  48. Smoot ME, Ono K, Ruscheinski J et al (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The United States Environmental Protection Agency (USEPA) through the Office of Research and Development funded this research. R.P. Revetta and J.W. Santo Domingo of the USEPA participated in design and coordination of the study. It has been subjected to the Agency’s peer and administrative review and has been approved for external publication. Any opinions expressed in this manuscript are of the authors and do not necessarily reflect the official positions and policies of USEPA. Any mention of trade names or commercial products does not constitute endorsement or recommendation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Gomez-Alvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gomez-Alvarez, V. (2014). Biofilm-Growing Bacteria Involved in the Corrosion of Concrete Wastewater Pipes: Protocols for Comparative Metagenomic Analyses. In: Donelli, G. (eds) Microbial Biofilms. Methods in Molecular Biology, vol 1147. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0467-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0467-9_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0466-2

  • Online ISBN: 978-1-4939-0467-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics