Skip to main content

Evaluating a Particular Circulating MicroRNA Species from an SLE Patient Using Stem-Loop qRT-PCR

  • Protocol
  • First Online:
Systemic Lupus Erythematosus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1134))

Abstract

Systemic lupus erythematosus (SLE) is a complex autoimmune disease, and correct judgment of SLE activity is very important in guiding precise clinical treatment. Circulating microRNAs (miRNAs) could serve as potential biomarkers of disease activity or status in SLE, and here we describe a modified qRT-PCR method for detecting them. Stem loop has become one of the most powerful methods for determining miRNA expression because it is highly sensitive and accurate and requires only small amount of sample. In this chapter, we focus on a stem-loop reverse transcription-bound SYBR green qRT-PCR protocol for evaluating a particular circulating miRNA species in SLE patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Petri M (2010) Systemic lupus erythematosus. In: Stone J et al (eds) A clinician’s pearls and myths in rheumatology. Springer, London, pp 131–159

    Google Scholar 

  2. Pan Y, Sawalha AH (2009) Epigenetic regulation and the pathogenesis of systemic lupus erythematosus. Transl Res 153:4–10

    Article  CAS  PubMed  Google Scholar 

  3. Te JL et al (2010) Identification of unique microRNA signature associated with lupus nephritis. PLoS One 5:e10344

    Article  PubMed Central  PubMed  Google Scholar 

  4. Wang H et al (2012) Circulating levels of inflammation-associated miR-155 and endothelial-enriched miR-126 in patients with end-stage renal disease. Braz J Med Biol Res 45(12):1308–1314

    Article  CAS  PubMed  Google Scholar 

  5. Esquela-Kerscher A, Slack FJ (2006) Oncomirs [mdash] microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  CAS  PubMed  Google Scholar 

  6. Bartel DP (2004) MicroRNAs: genomics biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  7. Huang JC et al (2007) Using expression profiling data to identify human microRNA targets. Nat Methods 4:1045–1049

    Article  CAS  PubMed  Google Scholar 

  8. Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    Article  CAS  PubMed  Google Scholar 

  9. Dai R, Ahmed SA (2011) MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl Res 157:163–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Chen X et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006

    Article  CAS  PubMed  Google Scholar 

  11. Fichtlscherer S et al (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107:677–684

    Article  CAS  PubMed  Google Scholar 

  12. Wang H, Peng W, Ouyang X, Li W, Dai Y (2012) Circulating microRNAs as candidate biomarkers in patients with systemic lupus erythematosus. Transl Res 160:198–206

    Article  CAS  PubMed  Google Scholar 

  13. Zhao H et al (2010) A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One 5:e13735

    Article  PubMed Central  PubMed  Google Scholar 

  14. Wang S-T, Li C, Liu L (2009) miRNA microarray technology in miRNA profiling. Curr Bioinform 4:141–148

    Article  CAS  Google Scholar 

  15. Cheng Yongqiang LZ, Yucong W, Yongshan F (2010) MicroRNA detection. Prog Chem 22:1509–1517

    Google Scholar 

  16. Chen C et al (2005) Real-time quantification of microRNAs by stem–loop RT–PCR. Nucleic Acids Res 33:e179

    Article  PubMed Central  PubMed  Google Scholar 

  17. Pan X, Murashov A, Stellwag E, Zhang B (2010) Monitoring microRNA expression during embryonic stem-cell differentiation using quantitative real-time PCR (qRT-PCR). In: Zhang B, Stellwag EJ (eds) RNAi and microRNA-mediated gene regulation in stem cells. Humana Press, Totowa, NJ, pp 213–224

    Chapter  Google Scholar 

  18. Udvardi MK, Czechowski T, Scheible W-R (2008) Eleven golden rules of quantitative RT-PCR. Plant Cell 20:1736–1737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Rong H et al (2011) MicroRNA-134 plasma levels before and after treatment for bipolar mania. J Psychiatr Res 45:92–95

    Article  PubMed  Google Scholar 

  20. Peltier HJ, Latham GJ (2008) Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 14:844–852

    Article  CAS  PubMed  Google Scholar 

  21. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  23. Zhao S et al (2011) MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum 63:1376–1386

    Article  CAS  PubMed  Google Scholar 

  24. Alexander T et al (2013) A3.22 upregulated microRNA-182 expression is associated with enhanced conventional CD4+ T cell proliferation in SLE. Ann Rheum Dis 72:A21

    Article  Google Scholar 

  25. Luo X et al (2013) The role of miR-125b in T lymphocytes in the pathogenesis of systemic lupus erythematosus. Clin Exp Rheumatol 31:263–271

    PubMed  Google Scholar 

  26. Stagakis E et al (2011) Identification of novel microRNA signatures linked to human lupus disease activity and pathogenesis: miR-21 regulates aberrant T cell responses through regulation of PDCD4 expression. Ann Rheum Dis 70:1496–1506

    Article  CAS  PubMed  Google Scholar 

  27. Pan W et al (2010) MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol 184:6773–6781

    Article  CAS  PubMed  Google Scholar 

  28. Lu MC et al (2013) Decreased microRNA(miR)-145 and increased miR-224 expression in T cells from patients with systemic lupus erythematosus involved in lupus immunopathogenesis. Clin Exp Immunol 171:91–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Liu Y et al (2013) MicroRNA-30a promotes B cell hyperactivity in patients with systemic lupus erythematosus by direct interaction with Lyn. Arthritis Rheum 65:1603–1611

    Article  CAS  PubMed  Google Scholar 

  30. Fan W et al (2012) Identification of microRNA-31 as a novel regulator contributing to impaired interleukin-2 production in T cells from patients with systemic lupus erythematosus. Arthritis Rheum 64:3715–3725

    Article  CAS  PubMed  Google Scholar 

  31. Divekar AA, Dubey S, Gangalum PR, Singh RR (2011) Dicer insufficiency and microRNA-155 overexpression in lupus regulatory T cells: an apparent paradox in the setting of an inflammatory milieu. J Immunol 186:924–930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Sui, W., Liu, F., Chen, J., Ou, M., Dai, Y. (2014). Evaluating a Particular Circulating MicroRNA Species from an SLE Patient Using Stem-Loop qRT-PCR. In: Eggleton, P., Ward, F. (eds) Systemic Lupus Erythematosus. Methods in Molecular Biology, vol 1134. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0326-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0326-9_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0325-2

  • Online ISBN: 978-1-4939-0326-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics