Skip to main content

Nuclear Envelope Regulation of Signaling Cascades

  • Chapter
  • First Online:
Cancer Biology and the Nuclear Envelope

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 773))

Abstract

The ultimate purpose of signal transduction is to transmit extracellular or cytoplasmic stimuli to the nuclear interior to elicit a cellular response, mediated primarily through changes in gene expression. The evolution of the nuclear envelope and the consequent compartmentalization of the genome, which is a defining feature of eukaryotes, introduced a physical barrier to the free access of genes. Initially regarded as nothing more than this, a physical barrier with selective permeability, recent findings have transformed our view of the nuclear envelope and its diverse roles in various aspects of cell biology and human diseases, much of which is only beginning to be understood. The realization that mutations in genes encoding nuclear envelope proteins cause a diverse array of tissue-selective diseases often referred to as “laminopathies” has provided new insight into structural and regulatory functions of the nuclear envelope. Genetic mutations causing abnormalities in the nuclear envelope can lead to dysregulated signaling that underlies pathogenesis of these diseases. The emerging picture indicates that the nuclear envelope is a node that fine-tunes signaling output and as such it may play a role in the biology of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ECM:

Extracellular matrix

EDMD:

Emery–Dreifuss muscular dystrophy

ER:

Endoplasmic reticulum

HGPS:

Hutchinson–Gilford progeria syndrome

INM:

Inner nuclear membrane

MAPK:

Mitogen activated protein kinase

MSC:

Mesenchymal stem cells

ONM:

Outer nuclear membrane

References

  1. Gruenbaum Y, Margalit A, Goldman RD, Shumaker DK, Wilson KL (2005) The nuclear lamina comes of age. Nat Rev Mol Cell Biol 6(1):21–31. doi:10.1038/nrm1550

    PubMed  CAS  Google Scholar 

  2. Stewart CL, Roux KJ, Burke B (2007) Blurring the boundary: the nuclear envelope extends its reach. Science 318(5855):1408–1412. doi:10.1126/science.1142034

    PubMed  CAS  Google Scholar 

  3. Terry LJ, Shows EB, Wente SR (2007) Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318(5855):1412–1416. doi:10.1126/science.1142204

    PubMed  CAS  Google Scholar 

  4. Schirmer EC, Gerace L (2005) The nuclear membrane proteome: extending the envelope. Trends Biochem Sci 30(10):551–558. doi:10.1016/j.tibs.2005.08.003

    PubMed  CAS  Google Scholar 

  5. Cascianelli G, Villani M, Tosti M, Marini F, Bartoccini E, Magni MV, Albi E (2008) Lipid microdomains in cell nucleus. Mol Biol Cell 19(12):5289–5295. doi:10.1091/mbc.E08-05-0517

    PubMed Central  PubMed  CAS  Google Scholar 

  6. Ledeen RW, Wu G (2004) Nuclear lipids: key signaling effectors in the nervous system and other tissues. J Lipid Res 45(1):1–8. doi:10.1194/jlr.R300015-JLR200

    PubMed  CAS  Google Scholar 

  7. Datta K, Guan T, Gerace L (2009) NET37, a nuclear envelope transmembrane protein with glycosidase homology, is involved in myoblast differentiation. J Biol Chem 284(43):29666–29676. doi:10.1074/jbc.M109.034041

    PubMed Central  PubMed  CAS  Google Scholar 

  8. Huber MD, Guan T, Gerace L (2009) Overlapping functions of nuclear envelope proteins NET25 (Lem2) and emerin in regulation of extracellular signal-regulated kinase signaling in myoblast differentiation. Mol Cell Biol 29(21):5718–5728. doi:10.1128/MCB.00270-09

    PubMed Central  PubMed  CAS  Google Scholar 

  9. Liu GH, Guan T, Datta K, Coppinger J, Yates J 3rd, Gerace L (2009) Regulation of myoblast differentiation by the nuclear envelope protein NET39. Mol Cell Biol 29(21):5800–5812. doi:10.1128/MCB.00684-09

    PubMed Central  PubMed  CAS  Google Scholar 

  10. Schirmer EC, Florens L, Guan T, Yates JR 3rd, Gerace L (2003) Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science 301(5638):1380–1382. doi:10.1126/science.1088176

    PubMed  CAS  Google Scholar 

  11. Korfali N, Wilkie GS, Swanson SK, Srsen V, de Las Heras J, Batrakou DG, Malik P, Zuleger N, Kerr AR, Florens L, Schirmer EC (2012) The nuclear envelope proteome differs notably between tissues. Nucleus 3(6):552–564. doi:10.4161/nucl.22257

    PubMed Central  PubMed  Google Scholar 

  12. Aebi U, Cohn J, Buhle L, Gerace L (1986) The nuclear lamina is a meshwork of intermediate-type filaments. Nature 323(6088):560–564. doi:10.1038/323560a0

    PubMed  CAS  Google Scholar 

  13. Fisher DZ, Chaudhary N, Blobel G (1986) cDNA sequencing of nuclear lamins A and C reveals primary and secondary structural homology to intermediate filament proteins. Proc Natl Acad Sci U S A 83(17):6450–6454

    PubMed Central  PubMed  CAS  Google Scholar 

  14. Goldman AE, Maul G, Steinert PM, Yang HY, Goldman RD (1986) Keratin-like proteins that coisolate with intermediate filaments of BHK-21 cells are nuclear lamins. Proc Natl Acad Sci U S A 83(11):3839–3843

    PubMed Central  PubMed  CAS  Google Scholar 

  15. McKeon FD, Kirschner MW, Caput D (1986) Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature 319(6053):463–468. doi:10.1038/319463a0

    PubMed  CAS  Google Scholar 

  16. Burke B, Stewart CL (2013) The nuclear lamins: flexibility in function. Nat Rev Mol Cell Biol 14(1):13–24. doi:10.1038/nrm3488

    PubMed  CAS  Google Scholar 

  17. Wilson KL, Foisner R (2010) Lamin-binding proteins. Cold Spring Harb Perspect Biol 2(4):a000554. doi:10.1101/cshperspect.a000554

    PubMed Central  PubMed  Google Scholar 

  18. Worman HJ, Foisner R (2010) The nuclear envelope from basic biology to therapy. Biochem Soc Trans 38(Pt 1):253–256. doi:10.1042/BST0380253

    PubMed  CAS  Google Scholar 

  19. Dauer WT, Worman HJ (2009) The nuclear envelope as a signaling node in development and disease. Dev Cell 17(5):626–638. doi:10.1016/j.devcel.2009.10.016

    PubMed  CAS  Google Scholar 

  20. Peter M, Kitten GT, Lehner CF, Vorburger K, Bailer SM, Maridor G, Nigg EA (1989) Cloning and sequencing of cDNA clones encoding chicken lamins A and B1 and comparison of the primary structures of vertebrate A- and B-type lamins. J Mol Biol 208(3):393–404

    PubMed  CAS  Google Scholar 

  21. Furukawa K, Hotta Y (1993) cDNA cloning of a germ cell specific lamin B3 from mouse spermatocytes and analysis of its function by ectopic expression in somatic cells. EMBO J 12(1):97–106

    PubMed Central  PubMed  CAS  Google Scholar 

  22. Furukawa K, Inagaki H, Hotta Y (1994) Identification and cloning of an mRNA coding for a germ cell-specific A-type lamin in mice. Exp Cell Res 212(2):426–430. doi:10.1006/excr.1994.1164

    PubMed  CAS  Google Scholar 

  23. Broers JL, Machiels BM, Kuijpers HJ, Smedts F, van den Kieboom R, Raymond Y, Ramaekers FC (1997) A- and B-type lamins are differentially expressed in normal human tissues. Histochem Cell Biol 107(6):505–517

    PubMed  CAS  Google Scholar 

  24. Lehner CF, Stick R, Eppenberger HM, Nigg EA (1987) Differential expression of nuclear lamin proteins during chicken development. J Cell Biol 105(1):577–587

    PubMed  CAS  Google Scholar 

  25. Stewart C, Burke B (1987) Teratocarcinoma stem cells and early mouse embryos contain only a single major lamin polypeptide closely resembling lamin B. Cell 51(3):383–392

    PubMed  CAS  Google Scholar 

  26. Rober RA, Weber K, Osborn M (1989) Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study. Development 105(2):365–378

    PubMed  CAS  Google Scholar 

  27. Worman HJ (2012) Nuclear lamins and laminopathies. J Pathol 226(2):316–325. doi:10.1002/path.2999

    PubMed  CAS  Google Scholar 

  28. Butin-Israeli V, Adam SA, Goldman AE, Goldman RD (2012) Nuclear lamin functions and disease. Trends Genet 28(9):464–471. doi:10.1016/j.tig.2012.06.001

    PubMed Central  PubMed  CAS  Google Scholar 

  29. Chow KH, Factor RE, Ullman KS (2012) The nuclear envelope environment and its cancer connections. Nat Rev Cancer 12(3):196–209. doi:10.1038/nrc3219

    PubMed  CAS  Google Scholar 

  30. Lin F, Worman HJ (1993) Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. J Biol Chem 268(22):16321–16326

    PubMed  CAS  Google Scholar 

  31. Machiels BM, Zorenc AH, Endert JM, Kuijpers HJ, van Eys GJ, Ramaekers FC, Broers JL (1996) An alternative splicing product of the lamin A/C gene lacks exon 10. J Biol Chem 271(16):9249–9253

    PubMed  CAS  Google Scholar 

  32. Fong LG, Ng JK, Lammerding J, Vickers TA, Meta M, Cote N, Gavino B, Qiao X, Chang SY, Young SR, Yang SH, Stewart CL, Lee RT, Bennett CF, Bergo MO, Young SG (2006) Prelamin A and lamin A appear to be dispensable in the nuclear lamina. J Clin Invest 116(3):743–752. doi:10.1172/JCI27125

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD (2008) Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 22(7):832–853. doi:10.1101/gad.1652708

    PubMed Central  PubMed  CAS  Google Scholar 

  34. Stuurman N, Heins S, Aebi U (1998) Nuclear lamins: their structure, assembly, and interactions. J Struct Biol 122(1–2):42–66. doi:10.1006/jsbi.1998.3987

    PubMed  CAS  Google Scholar 

  35. Dhe-Paganon S, Werner ED, Chi YI, Shoelson SE (2002) Structure of the globular tail of nuclear lamin. J Biol Chem 277(20):17381–17384. doi:10.1074/jbc.C200038200

    PubMed  CAS  Google Scholar 

  36. Krimm I, Ostlund C, Gilquin B, Couprie J, Hossenlopp P, Mornon JP, Bonne G, Courvalin JC, Worman HJ, Zinn-Justin S (2002) The Ig-like structure of the C-terminal domain of lamin A/C, mutated in muscular dystrophies, cardiomyopathy, and partial lipodystrophy. Structure 10(6):811–823

    PubMed  CAS  Google Scholar 

  37. Beck LA, Hosick TJ, Sinensky M (1990) Isoprenylation is required for the processing of the lamin A precursor. J Cell Biol 110(5):1489–1499

    PubMed  CAS  Google Scholar 

  38. Kitten GT, Nigg EA (1991) The CaaX motif is required for isoprenylation, carboxyl methylation, and nuclear membrane association of lamin B2. J Cell Biol 113(1):13–23

    PubMed  CAS  Google Scholar 

  39. Sinensky M, Fantle K, Trujillo M, McLain T, Kupfer A, Dalton M (1994) The processing pathway of prelamin A. J Cell Sci 107(Pt 1):61–67

    PubMed  CAS  Google Scholar 

  40. Young SG, Fong LG, Michaelis S (2005) Prelamin A, Zmpste24, misshapen cell nuclei, and progeria—new evidence suggesting that protein farnesylation could be important for disease pathogenesis. J Lipid Res 46(12):2531–2558. doi:10.1194/jlr.R500011-JLR200

    PubMed  CAS  Google Scholar 

  41. Zhang FL, Casey PJ (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 65:241–269. doi:10.1146/annurev.bi.65.070196.001325

    PubMed  CAS  Google Scholar 

  42. Clarke S (1992) Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu Rev Biochem 61:355–386. doi:10.1146/annurev.bi.61.070192.002035

    PubMed  CAS  Google Scholar 

  43. Krohne G, Waizenegger I, Hoger TH (1989) The conserved carboxy-terminal cysteine of nuclear lamins is essential for lamin association with the nuclear envelope. J Cell Biol 109(5):2003–2011

    PubMed  CAS  Google Scholar 

  44. Holtz D, Tanaka RA, Hartwig J, McKeon F (1989) The CaaX motif of lamin A functions in conjunction with the nuclear localization signal to target assembly to the nuclear envelope. Cell 59(6):969–977

    PubMed  CAS  Google Scholar 

  45. Bonne G, Di Barletta MR, Varnous S, Becane HM, Hammouda EH, Merlini L, Muntoni F, Greenberg CR, Gary F, Urtizberea JA, Duboc D, Fardeau M, Toniolo D, Schwartz K (1999) Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 21(3):285–288. doi:10.1038/6799

    PubMed  CAS  Google Scholar 

  46. Ostlund C, Bonne G, Schwartz K, Worman HJ (2001) Properties of lamin A mutants found in Emery-Dreifuss muscular dystrophy, cardiomyopathy and Dunnigan-type partial lipodystrophy. J Cell Sci 114(Pt 24):4435–4445

    PubMed  CAS  Google Scholar 

  47. Speckman RA, Garg A, Du F, Bennett L, Veile R, Arioglu E, Taylor SI, Lovett M, Bowcock AM (2000) Mutational and haplotype analyses of families with familial partial lipodystrophy (Dunnigan variety) reveal recurrent missense mutations in the globular C-terminal domain of lamin A/C. Am J Hum Genet 66(4):1192–1198. doi:10.1086/302836

    PubMed Central  PubMed  CAS  Google Scholar 

  48. Shackleton S, Lloyd DJ, Jackson SN, Evans R, Niermeijer MF, Singh BM, Schmidt H, Brabant G, Kumar S, Durrington PN, Gregory S, O’Rahilly S, Trembath RC (2000) LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat Genet 24(2):153–156. doi:10.1038/72807

    PubMed  CAS  Google Scholar 

  49. Cao H, Hegele RA (2000) Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 9(1):109–112

    PubMed  CAS  Google Scholar 

  50. De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I, Lyonnet S, Stewart CL, Munnich A, Le Merrer M, Levy N (2003) Lamin a truncation in Hutchinson-Gilford progeria. Science 300(5628):2055. doi:10.1126/science.1084125

    PubMed  Google Scholar 

  51. Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P, Dutra A, Pak E, Durkin S, Csoka AB, Boehnke M, Glover TW, Collins FS (2003) Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423(6937):293–298. doi:10.1038/nature01629

    PubMed  CAS  Google Scholar 

  52. Pendas AM, Zhou Z, Cadinanos J, Freije JM, Wang J, Hultenby K, Astudillo A, Wernerson A, Rodriguez F, Tryggvason K, Lopez-Otin C (2002) Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat Genet 31(1):94–99. doi:10.1038/ng871

    PubMed  CAS  Google Scholar 

  53. Bergo MO, Gavino B, Ross J, Schmidt WK, Hong C, Kendall LV, Mohr A, Meta M, Genant H, Jiang Y, Wisner ER, Van Bruggen N, Carano RA, Michaelis S, Griffey SM, Young SG (2002) Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. Proc Natl Acad Sci U S A 99(20):13049–13054. doi:10.1073/pnas.192460799

    PubMed Central  PubMed  CAS  Google Scholar 

  54. Navarro CL, Cadinanos J, De Sandre-Giovannoli A, Bernard R, Courrier S, Boccaccio I, Boyer A, Kleijer WJ, Wagner A, Giuliano F, Beemer FA, Freije JM, Cau P, Hennekam RC, Lopez-Otin C, Badens C, Levy N (2005) Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of Lamin A precursors. Hum Mol Genet 14(11):1503–1513. doi:10.1093/hmg/ddi159

    PubMed  CAS  Google Scholar 

  55. Navarro CL, De Sandre-Giovannoli A, Bernard R, Boccaccio I, Boyer A, Genevieve D, Hadj-Rabia S, Gaudy-Marqueste C, Smitt HS, Vabres P, Faivre L, Verloes A, Van Essen T, Flori E, Hennekam R, Beemer FA, Laurent N, Le Merrer M, Cau P, Levy N (2004) Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganization and identify restrictive dermopathy as a lethal neonatal laminopathy. Hum Mol Genet 13(20):2493–2503. doi:10.1093/hmg/ddh265

    PubMed  CAS  Google Scholar 

  56. Fong LG, Frost D, Meta M, Qiao X, Yang SH, Coffinier C, Young SG (2006) A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science 311(5767):1621–1623. doi:10.1126/science.1124875

    PubMed  CAS  Google Scholar 

  57. Yang SH, Meta M, Qiao X, Frost D, Bauch J, Coffinier C, Majumdar S, Bergo MO, Young SG, Fong LG (2006) A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. J Clin Invest 116(8):2115–2121. doi:10.1172/JCI28968

    PubMed Central  PubMed  CAS  Google Scholar 

  58. Gordon LB, Kleinman ME, Miller DT, Neuberg DS, Giobbie-Hurder A, Gerhard-Herman M, Smoot LB, Gordon CM, Cleveland R, Snyder BD, Fligor B, Bishop WR, Statkevich P, Regen A, Sonis A, Riley S, Ploski C, Correia A, Quinn N, Ullrich NJ, Nazarian A, Liang MG, Huh SY, Schwartzman A, Kieran MW (2012) Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 109(41):16666–16671. doi:10.1073/pnas.1202529109

    PubMed Central  PubMed  CAS  Google Scholar 

  59. Kyriakis JM, Avruch J (2012) Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 92(2):689–737. doi:10.1152/physrev.00028.2011

    PubMed  CAS  Google Scholar 

  60. Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81(2):807–869

    PubMed  CAS  Google Scholar 

  61. Plotnikov A, Zehorai E, Procaccia S, Seger R (2011) The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta 1813(9):1619–1633. doi:10.1016/j.bbamcr.2010.12.012

    PubMed  CAS  Google Scholar 

  62. Wagner EF, Nebreda AR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9(8):537–549. doi:10.1038/nrc2694

    PubMed  CAS  Google Scholar 

  63. Raman M, Chen W, Cobb MH (2007) Differential regulation and properties of MAPKs. Oncogene 26(22):3100–3112. doi:10.1038/sj.onc.1210392

    PubMed  CAS  Google Scholar 

  64. McKay MM, Morrison DK (2007) Integrating signals from RTKs to ERK/MAPK. Oncogene 26(22):3113–3121. doi:10.1038/sj.onc.1210394

    PubMed  CAS  Google Scholar 

  65. Ivorra C, Kubicek M, Gonzalez JM, Sanz-Gonzalez SM, Alvarez-Barrientos A, O’Connor JE, Burke B, Andres V (2006) A mechanism of AP-1 suppression through interaction of c-Fos with lamin A/C. Genes Dev 20(3):307–320. doi:10.1101/gad.349506

    PubMed Central  PubMed  CAS  Google Scholar 

  66. Arimura T, Helbling-Leclerc A, Massart C, Varnous S, Niel F, Lacene E, Fromes Y, Toussaint M, Mura AM, Keller DI, Amthor H, Isnard R, Malissen M, Schwartz K, Bonne G (2005) Mouse model carrying H222P-Lmna mutation develops muscular dystrophy and dilated cardiomyopathy similar to human striated muscle laminopathies. Hum Mol Genet 14(1):155–169. doi:10.1093/hmg/ddi017

    PubMed  CAS  Google Scholar 

  67. Muchir A, Pavlidis P, Decostre V, Herron AJ, Arimura T, Bonne G, Worman HJ (2007) Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy. J Clin Invest 117(5):1282–1293. doi:10.1172/JCI29042

    PubMed Central  PubMed  CAS  Google Scholar 

  68. Muchir A, Wu W, Choi JC, Iwata S, Morrow J, Homma S, Worman HJ (2012) Abnormal p38alpha mitogen-activated protein kinase signaling in dilated cardiomyopathy caused by lamin A/C gene mutation. Hum Mol Genet 21(19):4325–4333. doi:10.1093/hmg/dds265

    PubMed Central  PubMed  CAS  Google Scholar 

  69. Muchir A, Kim YJ, Reilly SA, Wu W, Choi JC, Worman HJ (2013) Inhibition of extracellular signal-regulated kinase 1/2 signaling has beneficial effects on skeletal muscle in a mouse model of Emery-Dreifuss muscular dystrophy caused by lamin A/C gene mutation. Skelet Muscle 3:17

    PubMed Central  PubMed  CAS  Google Scholar 

  70. Muchir A, Shan J, Bonne G, Lehnart SE, Worman HJ (2009) Inhibition of extracellular signal-regulated kinase signaling to prevent cardiomyopathy caused by mutation in the gene encoding A-type lamins. Hum Mol Genet 18(2):241–247. doi:10.1093/hmg/ddn343

    PubMed Central  PubMed  CAS  Google Scholar 

  71. Wu W, Muchir A, Shan J, Bonne G, Worman HJ (2011) Mitogen-activated protein kinase inhibitors improve heart function and prevent fibrosis in cardiomyopathy caused by mutation in lamin A/C gene. Circulation 123(1):53–61. doi:10.1161/CIRCULATIONAHA.110.970673

    PubMed Central  PubMed  CAS  Google Scholar 

  72. Wu W, Shan J, Bonne G, Worman HJ, Muchir A (2010) Pharmacological inhibition of c-Jun N-terminal kinase signaling prevents cardiomyopathy caused by mutation in LMNA gene. Biochim Biophys Acta 1802(7–8):632–638. doi:10.1016/j.bbadis.2010.04.001

    PubMed Central  PubMed  CAS  Google Scholar 

  73. Emerson LJ, Holt MR, Wheeler MA, Wehnert M, Parsons M, Ellis JA (2009) Defects in cell spreading and ERK1/2 activation in fibroblasts with lamin A/C mutations. Biochim Biophys Acta 1792(8):810–821. doi:10.1016/j.bbadis.2009.05.007

    PubMed  CAS  Google Scholar 

  74. Muchir A, Reilly SA, Wu W, Iwata S, Homma S, Bonne G, Worman HJ (2012) Treatment with selumetinib preserves cardiac function and improves survival in cardiomyopathy caused by mutation in the lamin A/C gene. Cardiovasc Res 93(2):311–319. doi:10.1093/cvr/cvr301

    PubMed  CAS  Google Scholar 

  75. Gonzalez JM, Navarro-Puche A, Casar B, Crespo P, Andres V (2008) Fast regulation of AP-1 activity through interaction of lamin A/C, ERK1/2, and c-Fos at the nuclear envelope. J Cell Biol 183(4):653–666. doi:10.1083/jcb.200805049

    PubMed Central  PubMed  CAS  Google Scholar 

  76. Shaw RJ, Cantley LC (2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441(7092):424–430. doi:10.1038/nature04869

    PubMed  CAS  Google Scholar 

  77. Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16(1):3–34

    PubMed  CAS  Google Scholar 

  78. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA, Sabatini DM (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25(6):903–915. doi:10.1016/j.molcel.2007.03.003

    PubMed  CAS  Google Scholar 

  79. Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9(3):316–323. doi:10.1038/ncb1547

    PubMed  CAS  Google Scholar 

  80. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35. doi:10.1038/nrm3025

    PubMed Central  PubMed  CAS  Google Scholar 

  81. Choi JC, Muchir A, Wu W, Iwata S, Homma S, Morrow JP, Worman HJ (2012) Temsirolimus activates autophagy and ameliorates cardiomyopathy caused by lamin A/C gene mutation. Sci Transl Med 4(144):144ra102. doi:10.1126/scitranslmed.3003875

    PubMed Central  PubMed  Google Scholar 

  82. Ramos FJ, Chen SC, Garelick MG, Dai DF, Liao CY, Schreiber KH, MacKay VL, An EH, Strong R, Ladiges WC, Rabinovitch PS, Kaeberlein M, Kennedy BK (2012) Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci Transl Med 4(144):144ra103. doi:10.1126/scitranslmed.3003802

    PubMed Central  PubMed  Google Scholar 

  83. Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N, Nagashima K, Stewart CL, Burke B (1999) Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 147(5):913–920

    PubMed Central  PubMed  CAS  Google Scholar 

  84. Jahn D, Schramm S, Schnolzer M, Heilmann CJ, de Koster CG, Schutz W, Benavente R, Alsheimer M (2012) A truncated lamin A in the Lmna -/- mouse line: implications for the understanding of laminopathies. Nucleus 3(5):463–474. doi:10.4161/nucl.21676

    PubMed Central  PubMed  Google Scholar 

  85. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42. doi:10.1016/j.cell.2007.12.018

    PubMed Central  PubMed  CAS  Google Scholar 

  86. Boguslavsky RL, Stewart CL, Worman HJ (2006) Nuclear lamin A inhibits adipocyte differentiation: implications for Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 15(4):653–663. doi:10.1093/hmg/ddi480

    PubMed  CAS  Google Scholar 

  87. Choi JC, Wu W, Muchir A, Iwata S, Homma S, Worman HJ (2012) Dual specificity phosphatase 4 mediates cardiomyopathy caused by lamin A/C (LMNA) gene mutation. J Biol Chem 287(48):40513–40524. doi:10.1074/jbc.M112.404541

    PubMed Central  PubMed  CAS  Google Scholar 

  88. Bertacchini J, Beretti F, Cenni V, Guida M, Gibellini F, Mediani L, Marin O, Maraldi NM, de Pol A, Lattanzi G, Cocco L, Marmiroli S (2013) The protein kinase Akt/PKB regulates both prelamin A degradation and Lmna gene expression. FASEB J 27:2145. doi:10.1096/fj.12-218214

    PubMed  CAS  Google Scholar 

  89. Cenni V, Bertacchini J, Beretti F, Lattanzi G, Bavelloni A, Riccio M, Ruzzene M, Marin O, Arrigoni G, Parnaik V, Wehnert M, Maraldi NM, de Pol A, Cocco L, Marmiroli S (2008) Lamin A Ser404 is a nuclear target of Akt phosphorylation in C2C12 cells. J Proteome Res 7(11):4727–4735. doi:10.1021/pr800262g

    PubMed  CAS  Google Scholar 

  90. Worman HJ, Fong LG, Muchir A, Young SG (2009) Laminopathies and the long strange trip from basic cell biology to therapy. J Clin Invest 119(7):1825–1836. doi:10.1172/JCI37679

    PubMed Central  PubMed  CAS  Google Scholar 

  91. Scaffidi P, Misteli T (2008) Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol 10(4):452–459. doi:10.1038/ncb1708

    PubMed Central  PubMed  CAS  Google Scholar 

  92. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284(5415):770–776

    PubMed  CAS  Google Scholar 

  93. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111. doi:10.1038/35102167

    PubMed  CAS  Google Scholar 

  94. Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123(Pt 24):4195–4200. doi:10.1242/jcs.023820

    PubMed Central  PubMed  CAS  Google Scholar 

  95. Hernandez L, Roux KJ, Wong ES, Mounkes LC, Mutalif R, Navasankari R, Rai B, Cool S, Jeong JW, Wang H, Lee HS, Kozlov S, Grunert M, Keeble T, Jones CM, Meta MD, Young SG, Daar IO, Burke B, Perantoni AO, Stewart CL (2010) Functional coupling between the extracellular matrix and nuclear lamina by Wnt signaling in progeria. Dev Cell 19(3):413–425. doi:10.1016/j.devcel.2010.08.013

    PubMed Central  PubMed  CAS  Google Scholar 

  96. Mounkes LC, Kozlov S, Hernandez L, Sullivan T, Stewart CL (2003) A progeroid syndrome in mice is caused by defects in A-type lamins. Nature 423(6937):298–301. doi:10.1038/nature01631

    PubMed  CAS  Google Scholar 

  97. Miraoui H, Marie PJ (2010) Fibroblast growth factor receptor signaling crosstalk in skeletogenesis. Sci Signal 3(146):re9. doi:10.1126/scisignal.3146re9

    PubMed  Google Scholar 

  98. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17(1):9–26. doi:10.1016/j.devcel.2009.06.016

    PubMed Central  PubMed  CAS  Google Scholar 

  99. Vijg J, Campisi J (2008) Puzzles, promises and a cure for ageing. Nature 454(7208):1065–1071. doi:10.1038/nature07216

    PubMed Central  PubMed  CAS  Google Scholar 

  100. Kirkwood TB (2005) Understanding the odd science of aging. Cell 120(4):437–447. doi:10.1016/j.cell.2005.01.027

    PubMed  CAS  Google Scholar 

  101. Ramirez CL, Cadinanos J, Varela I, Freije JM, Lopez-Otin C (2007) Human progeroid syndromes, aging and cancer: new genetic and epigenetic insights into old questions. Cell Mol Life Sci 64(2):155–170. doi:10.1007/s00018-006-6349-3

    PubMed  CAS  Google Scholar 

  102. Varela I, Cadinanos J, Pendas AM, Gutierrez-Fernandez A, Folgueras AR, Sanchez LM, Zhou Z, Rodriguez FJ, Stewart CL, Vega JA, Tryggvason K, Freije JM, Lopez-Otin C (2005) Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature 437(7058):564–568. doi:10.1038/nature04019

    PubMed  CAS  Google Scholar 

  103. Liu B, Wang J, Chan KM, Tjia WM, Deng W, Guan X, Huang JD, Li KM, Chau PY, Chen DJ, Pei D, Pendas AM, Cadinanos J, Lopez-Otin C, Tse HF, Hutchison C, Chen J, Cao Y, Cheah KS, Tryggvason K, Zhou Z (2005) Genomic instability in laminopathy-based premature aging. Nat Med 11(7):780–785. doi:10.1038/nm1266

    PubMed  CAS  Google Scholar 

  104. Burtner CR, Kennedy BK (2010) Progeria syndromes and ageing: what is the connection? Nat Rev Mol Cell Biol 11(8):567–578. doi:10.1038/nrm2944

    PubMed  CAS  Google Scholar 

  105. Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132(3):344–362. doi:10.1016/j.cell.2008.01.020

    PubMed  CAS  Google Scholar 

  106. Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8(1):49–62. doi:10.1038/nrm2083

    PubMed  CAS  Google Scholar 

  107. Adler AS, Sinha S, Kawahara TL, Zhang JY, Segal E, Chang HY (2007) Motif module map reveals enforcement of aging by continual NF-kappaB activity. Genes Dev 21(24):3244–3257. doi:10.1101/gad.1588507

    PubMed Central  PubMed  CAS  Google Scholar 

  108. Tak PP, Firestein GS (2001) NF-kappaB: a key role in inflammatory diseases. J Clin Invest 107(1):7–11. doi:10.1172/JCI11830

    PubMed Central  PubMed  CAS  Google Scholar 

  109. Osorio FG, Barcena C, Soria-Valles C, Ramsay AJ, de Carlos F, Cobo J, Fueyo A, Freije JM, Lopez-Otin C (2012) Nuclear lamina defects cause ATM-dependent NF-kappaB activation and link accelerated aging to a systemic inflammatory response. Genes Dev 26(20):2311–2324. doi:10.1101/gad.197954.112

    PubMed Central  PubMed  CAS  Google Scholar 

  110. Laguri C, Gilquin B, Wolff N, Romi-Lebrun R, Courchay K, Callebaut I, Worman HJ, Zinn-Justin S (2001) Structural characterization of the LEM motif common to three human inner nuclear membrane proteins. Structure 9(6):503–511

    PubMed  CAS  Google Scholar 

  111. Ostlund C, Ellenberg J, Hallberg E, Lippincott-Schwartz J, Worman HJ (1999) Intracellular trafficking of emerin, the Emery-Dreifuss muscular dystrophy protein. J Cell Sci 112(Pt 11):1709–1719

    PubMed  CAS  Google Scholar 

  112. Clements L, Manilal S, Love DR, Morris GE (2000) Direct interaction between emerin and lamin A. Biochem Biophys Res Commun 267(3):709–714. doi:10.1006/bbrc.1999.2023

    PubMed  CAS  Google Scholar 

  113. Raharjo WH, Enarson P, Sullivan T, Stewart CL, Burke B (2001) Nuclear envelope defects associated with LMNA mutations cause dilated cardiomyopathy and Emery-Dreifuss muscular dystrophy. J Cell Sci 114(Pt 24):4447–4457

    PubMed  CAS  Google Scholar 

  114. Vaughan A, Alvarez-Reyes M, Bridger JM, Broers JL, Ramaekers FC, Wehnert M, Morris GE, Whitfield WGF, Hutchison CJ (2001) Both emerin and lamin C depend on lamin A for localization at the nuclear envelope. J Cell Sci 114(Pt 14):2577–2590

    PubMed  CAS  Google Scholar 

  115. Anastas JN, Moon RT (2013) WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 13(1):11–26. doi:10.1038/nrc3419

    PubMed  CAS  Google Scholar 

  116. Markiewicz E, Tilgner K, Barker N, van de Wetering M, Clevers H, Dorobek M, Hausmanowa-Petrusewicz I, Ramaekers FC, Broers JL, Blankesteijn WM, Salpingidou G, Wilson RG, Ellis JA, Hutchison CJ (2006) The inner nuclear membrane protein emerin regulates beta-catenin activity by restricting its accumulation in the nucleus. EMBO J 25(14):3275–3285. doi:10.1038/sj.emboj.7601230

    PubMed Central  PubMed  CAS  Google Scholar 

  117. Neumann S, Schneider M, Daugherty RL, Gottardi CJ, Eming SA, Beijer A, Noegel AA, Karakesisoglou I (2010) Nesprin-2 interacts with {alpha}-catenin and regulates Wnt signaling at the nuclear envelope. J Biol Chem 285(45):34932–34938. doi:10.1074/jbc.M110.119651

    PubMed Central  PubMed  CAS  Google Scholar 

  118. Wu W, Lin F, Worman HJ (2002) Intracellular trafficking of MAN1, an integral protein of the nuclear envelope inner membrane. J Cell Sci 115(Pt 7):1361–1371

    PubMed  CAS  Google Scholar 

  119. Lin F, Blake DL, Callebaut I, Skerjanc IS, Holmer L, McBurney MW, Paulin-Levasseur M, Worman HJ (2000) MAN1, an inner nuclear membrane protein that shares the LEM domain with lamina-associated polypeptide 2 and emerin. J Biol Chem 275(7):4840–4847

    PubMed  CAS  Google Scholar 

  120. Paulin-Levasseur M, Blake DL, Julien M, Rouleau L (1996) The MAN antigens are non-lamin constituents of the nuclear lamina in vertebrate cells. Chromosoma 104(5):367–379

    PubMed  CAS  Google Scholar 

  121. Lee KK, Gruenbaum Y, Spann P, Liu J, Wilson KL (2000) C. elegans nuclear envelope proteins emerin, MAN1, lamin, and nucleoporins reveal unique timing of nuclear envelope breakdown during mitosis. Mol Biol Cell 11(9):3089–3099

    PubMed Central  PubMed  CAS  Google Scholar 

  122. Mansharamani M, Wilson KL (2005) Direct binding of nuclear membrane protein MAN1 to emerin in vitro and two modes of binding to barrier-to-autointegration factor. J Biol Chem 280(14):13863–13870. doi:10.1074/jbc.M413020200

    PubMed  CAS  Google Scholar 

  123. Massague J (2012) TGFbeta signalling in context. Nat Rev Mol Cell Biol 13(10):616–630. doi:10.1038/nrm3434

    PubMed  CAS  Google Scholar 

  124. Hellemans J, Preobrazhenska O, Willaert A, Debeer P, Verdonk PC, Costa T, Janssens K, Menten B, Van Roy N, Vermeulen SJ, Savarirayan R, Van Hul W, Vanhoenacker F, Huylebroeck D, De Paepe A, Naeyaert JM, Vandesompele J, Speleman F, Verschueren K, Coucke PJ, Mortier GR (2004) Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis. Nat Genet 36(11):1213–1218. doi:10.1038/ng1453

    PubMed  CAS  Google Scholar 

  125. Lin F, Morrison JM, Wu W, Worman HJ (2005) MAN1, an integral protein of the inner nuclear membrane, binds Smad2 and Smad3 and antagonizes transforming growth factor-beta signaling. Hum Mol Genet 14(3):437–445. doi:10.1093/hmg/ddi040

    PubMed  CAS  Google Scholar 

  126. Pan D, Estevez-Salmeron LD, Stroschein SL, Zhu X, He J, Zhou S, Luo K (2005) The integral inner nuclear membrane protein MAN1 physically interacts with the R-Smad proteins to repress signaling by the transforming growth factor-{beta} superfamily of cytokines. J Biol Chem 280(16):15992–16001. doi:10.1074/jbc.M411234200

    PubMed  CAS  Google Scholar 

  127. Cohen TV, Kosti O, Stewart CL (2007) The nuclear envelope protein MAN1 regulates TGFbeta signaling and vasculogenesis in the embryonic yolk sac. Development 134(7):1385–1395. doi:10.1242/dev.02816

    PubMed  CAS  Google Scholar 

  128. Ishimura A, Ng JK, Taira M, Young SG, Osada S (2006) Man1, an inner nuclear membrane protein, regulates vascular remodeling by modulating transforming growth factor beta signaling. Development 133(19):3919–3928. doi:10.1242/dev.02538

    PubMed  CAS  Google Scholar 

  129. Bourgeois B, Gilquin B, Tellier-Lebègue C, Östlund C, Wu W, Pérez J, El Hage P, Lallemand F, Worman HJ, Zinn-Justin S (2013) Inhibition of transforming growth factor-b signaling at the nuclear envelope: characterization of MAN1-Smad2/3-PPM1A interactions. Sci Signal 6:ra49

    PubMed  Google Scholar 

  130. Raju GP, Dimova N, Klein PS, Huang HC (2003) SANE, a novel LEM domain protein, regulates bone morphogenetic protein signaling through interaction with Smad1. J Biol Chem 278(1):428–437. doi:10.1074/jbc.M210505200

    PubMed  CAS  Google Scholar 

  131. Diamond DA, Berry SJ, Umbricht C, Jewett HJ, Coffey DS (1982) Computerized image analysis of nuclear shape as a prognostic factor for prostatic cancer. Prostate 3(4):321–332

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard J. Worman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Choi, J.C., Worman, H.J. (2014). Nuclear Envelope Regulation of Signaling Cascades. In: Schirmer, E., de las Heras, J. (eds) Cancer Biology and the Nuclear Envelope. Advances in Experimental Medicine and Biology, vol 773. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8032-8_9

Download citation

Publish with us

Policies and ethics