Skip to main content

Functional MRI of the Auditory Cortex

  • Chapter
  • First Online:
fMRI: From Nuclear Spins to Brain Functions

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 30))

  • 3396 Accesses

Abstract

Audition is central in our life. It is crucial to interpersonal communication and social relations. It also provides us with vital and unique information for interacting optimally with the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul-Kareem IA, Sluming V (2008) Heschl gyrus and its included primary auditory cortex: structural MRI studies in healthy and diseased subjects. J Magn Reson Imaging 28:287–299

    Article  PubMed  Google Scholar 

  • Adriani M, Maeder P, Meuli R, Thiran AB, Frischknecht R, Villemure JG, Mayer J, Annoni JM, Bogousslavsky J, Fornari E et al (2003) Sound recognition and localization in man: specialized cortical networks and effects of acute circumscribed lesions. Exp Brain Res 153:591–604

    Article  PubMed  Google Scholar 

  • Ahveninen J, Jaaskelainen IP, Raij T, Bonmassar G, Devore S, Hamalainen M, Levanen S, Lin FH, Sams M, Shinn-Cunningham BG et al (2006) Task-modulated “what” and “where” pathways in human auditory cortex. Proc Natl Acad Sci U S A 103:14608–14613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alain C, Arnott SR, Hevenor S, Graham S, Grady CL (2001) “What” and “where” in the human auditory system. Proc Natl Acad Sci U S A 98:12301–12306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alink A, Euler F, Kriegeskorte N, Singer W, Kohler A (2012) Auditory motion direction encoding in auditory cortex and high-level visual cortex. Hum Brain Mapp 33:969–978

    Article  PubMed  Google Scholar 

  • Altmann CF, Bledowski C, Wibral M, Kaiser J (2007) Processing of location and pattern changes of natural sounds in the human auditory cortex. Neuroimage 35:1192–1200

    Article  PubMed  Google Scholar 

  • Arnott SR, Binns MA, Grady CL, Alain C (2004) Assessing the auditory dual-pathway model in humans. Neuroimage 22:401–408

    Article  PubMed  Google Scholar 

  • Bandettini PA, Jesmanowicz A, Van Kylen J, Birn RM, Hyde JS (1998) Functional MRI of brain activation induced by scanner acoustic noise. Magn Reson Med 39:410–416

    Article  CAS  PubMed  Google Scholar 

  • Barrett DJK, Hall DA (2006) Response preferences for “what” and “where” in human non-primary auditory cortex. Neuroimage 32:968–977

    Article  PubMed  Google Scholar 

  • Baumgart F, Gaschler-Markefski B, Woldorff MG, Heinze HJ, Scheich H (1999) A movement-sensitive area in auditory cortex. Nature 400:724–726

    Article  CAS  PubMed  Google Scholar 

  • Belin P (2006) Voice processing in human and non-human primates. Philos Trans R Soci B-Biol Sci 361:2091–2107

    Article  Google Scholar 

  • Belin P, Zatorre RJ (2000) ‘What’, ‘where’ and ‘how’ in auditory cortex. Nat Neurosci 3:965–966

    Article  CAS  PubMed  Google Scholar 

  • Belin P, Zatorre RJ, Hoge R, Evans AC, Pike B (1999) Event-related fMRI of the auditory cortex. Neuroimage 10:417–429

    Article  CAS  PubMed  Google Scholar 

  • Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B (2000) Voice-selective areas in human auditory cortex. Nature 403:309–312

    Article  CAS  PubMed  Google Scholar 

  • Belin P, Fecteau S, Bedard C (2004) Thinking the voice: neural correlates of voice perception. Trends Cogn Sci 8:129–135

    Article  PubMed  Google Scholar 

  • Bendor D, Wang X (2006) Cortical representations of pitch in monkeys and humans. Curr Opin Neurobiol 16:391–399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bilecen D, Scheffler K, Schmid N, Tschopp K, Seelig J (1998) Tonotopic organization of the human auditory cortex as detected by BOLD-FMRI. Hear Res 126:19–27

    Article  CAS  PubMed  Google Scholar 

  • Binder JR, Rao SM, Hammeke TA, Yetkin FZ, Jesmanowicz A, Bandettini PA, Wong EC, Estkowski LD, Goldstein MD, Haughton VM et al (1994) Functional magnetic resonance imaging of human auditory cortex. Ann Neurol 35:662–672

    Article  CAS  PubMed  Google Scholar 

  • Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Springer JA, Kaufman JN, Possing ET (2000) Human temporal lobe activation by speech and nonspeech sounds. Cereb Cortex 10:512–528

    Article  CAS  PubMed  Google Scholar 

  • Boemio A, Fromm S, Braun A, Poeppel D (2005) Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nat Neurosci 8:389–395

    Article  CAS  PubMed  Google Scholar 

  • Bonte M, Valente G, Formisano E (2009) Dynamic and task-dependent encoding of speech and voice by phase reorganization of cortical oscillations. J Neurosci 29:1699–1706

    Article  PubMed  Google Scholar 

  • Bonte M, Hausfeld L, Scharke W, Valente G, Formisano E (2014) Task-dependent decoding of speaker and vowel identity from auditory cortical response patterns. J Neurosci 34:4548–4557

    Article  CAS  PubMed  Google Scholar 

  • Brechmann A, Scheich H (2005) Hemispheric shifts of sound representation in auditory cortex with conceptual listening. Cereb Cortex 15:578–587

    Article  PubMed  Google Scholar 

  • Brechmann A, Baumgart F, Scheich H (2002) Sound-level-dependent representation of frequency modulations in human auditory cortex: a low-noise fMRI study. J Neurophysiol 87:423–433

    PubMed  Google Scholar 

  • Bregman AS (1990) Auditory scene analysis: the perceptual organization of sound. MIT, Cambridge

    Google Scholar 

  • Brodmann K (1909) Vergleichende lokalisationslehre der grosshirnrinde in ihren prinzipien dargestellt auf grund des zellaufbaus. Barth, Leipzig

    Google Scholar 

  • Brown EC, Muzik O, Rothermel R, Matsuzaki N, Juhasz C, Shah AK, Atkinson MD, Fuerst D, Mittal S, Sood S et al (2012) Evaluating reverse speech as a control task with language-related gamma activity on electrocorticography. Neuroimage 60:2335–2345

    Article  PubMed Central  PubMed  Google Scholar 

  • Campain R, Minckler J (1976) A note on the gross configurations of the human auditory cortex. Brain Lang 3:318–323

    Article  CAS  PubMed  Google Scholar 

  • Chevillet M, Riesenhuber M, Rauschecker JP (2011) Functional correlates of the anterolateral processing hierarchy in human auditory cortex. J Neurosci 31:9345–9352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clarke S, Morosan P (2012) Architecture, connectivity, and transmitter receptors of human auditory cortex. In: Poeppel D, Overath T, Popper AN, Fay RR (eds) The human auditory cortex, 2nd edn. Springer, New York, pp 11–38

    Chapter  Google Scholar 

  • Clarke S, Bellmann Thiran A, Maeder P, Adriani M, Vernet O, Regli L, Cuisenaire O, Thiran JP (2002) What and where in human audition: selective deficits following focal hemispheric lesions. Exp Brain Res 147:8–15

    Article  PubMed  Google Scholar 

  • Da Costa S, van der Zwaag W, Marques JP, Frackowiak RS, Clarke S, Saenz M (2011) Human primary auditory cortex follows the shape of Heschl’s gyrus. J Neurosci 31:14067–14075

    Article  CAS  PubMed  Google Scholar 

  • Davis MH, Johnsrude IS (2003) Hierarchical processing in spoken language comprehension. J Neurosci 23:3423–3431

    CAS  PubMed  Google Scholar 

  • De Martino F, Valente G, Staeren N, Ashburner J, Goebel R, Formisano E (2008) Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. Neuroimage 43:44–58

    Article  PubMed  Google Scholar 

  • De Martino F, de Borst AW, Valente G, Goebel R, Formisano E (2011) Predicting EEG single trial responses with simultaneous fMRI and relevance vector machine regression. Neuroimage 56:826–836

    Article  PubMed  Google Scholar 

  • De Martino F, Moerel M, Xu J, van de Moortele PF, Uğurbil K, Goebel R et al (2014a) High resolution mapping of myelo-architecture in vivo: localization of auditory areas in the human brain. Cereb Cortex. doi:10.1093/cercor/bhu150

    Google Scholar 

  • De Martino F, Moerel M, Uğurbil K, Formisano E, Yacoub E (2014b) Less noise, more activation: multiband acquisition schemes for auditory functional MRI. Magn Reson Med. doi:0.1002/mrm.25408

    Google Scholar 

  • Dehaene-Lambertz G, Pallier C, Serniclaes W, Sprenger-Charolles L, Jobert A, Dehaene S (2005) Neural correlates of switching from auditory to speech perception. Neuroimage 24:21–33

    Article  PubMed  Google Scholar 

  • Di Salle F, Formisano E, Seifritz E, Linden DE, Scheffler K, Saulino C, Tedeschi G, Zanella FE, Pepino A, Goebel R, Marciano E (2001) Functional fields in human auditory cortex revealed by time-resolved fMRI without interference of EPI noise. Neuroimage 13:328–338

    Article  CAS  PubMed  Google Scholar 

  • Di Salle F, Esposito F, Scarabino T, Formisano E, Marciano E, Saulino C, Cirillo S, Elefante R, Scheffler K, Seifritz E (2003) fMRI of the auditory system: understanding the neural basis of auditory gestalt. Magn Reson Imaging 21:1213–1224

    Article  PubMed  Google Scholar 

  • Dick F, Tierney AT, Lutti A, Josephs O, Sereno MI, Weiskopf N (2012) In vivo functional and myeloarchitectonic mapping of human primary auditory areas. J Neurosci 32:16095–16105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des Erwachsenen Menschen. Springer, Berlin

    Google Scholar 

  • Eden GF, Joseph JE, Brown HE, Brown CP, Zeffiro TA (1999) Utilizing hemodynamic delay and dispersion to detect fMRI signal change without auditory interference: the behavior interleaved gradients technique. Magn Reson Med 41:13–20

    Article  CAS  PubMed  Google Scholar 

  • Edmister WB, Talavage TM, Ledden PJ, Weisskoff RM (1999) Improved auditory cortex imaging using clustered volume acquisitions. Hum Brain Mapp 7:89–97

    Article  CAS  PubMed  Google Scholar 

  • Engelien A, Yang Y, Engelien W, Zonana J, Stern E, Silbersweig DA (2002) Physiological mapping of human auditory cortices with a silent event-related fMRI technique. Neuroimage 16:944–953

    Article  PubMed  Google Scholar 

  • Ethofer T, Van De Ville D, Scherer K, Vuilleumier P (2009) Decoding of emotional information in voice-sensitive cortices. Curr Biol 19:1028–1033

    Article  CAS  PubMed  Google Scholar 

  • Feinberg DA, Moeller S, Smith SM, Auerbach E, Ramanna S, Gunther M, Glasser MF, Miller KL, Uğurbil K, Yacoub E (2010) Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS ONE 5:e15710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fishman YI, Steinschneider M (2009) Temporally dynamic frequency tuning of population responses in monkey primary auditory cortex. Hearing Res 254:64–76

    Article  Google Scholar 

  • Formisano E, Kriegeskorte N (2012) Seeing patterns through the hemodynamic veil—the future of pattern-information fMRI. Neuroimage 62:1249–1256

    Article  PubMed  Google Scholar 

  • Formisano E, Pepino A, Bracale M, Di Salle F, Saulino C, Marciano E (1998) Localisation and characterisation of auditory perception through functional magnetic resonance imaging. Technol Health Care 6:111–123

    CAS  PubMed  Google Scholar 

  • Formisano E, Kim DS, Di Salle F, van de Moortele PF, Uğurbil K, Goebel R (2003) Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40:859–869

    Article  CAS  PubMed  Google Scholar 

  • Formisano E, De Martino F, Valente G (2008a) Multivariate analysis of fMRI time series: classification and regression of brain responses using machine learning. Magn Reson Imaging 26:921–934

    Article  PubMed  Google Scholar 

  • Formisano E, De Martino F, Bonte M, Goebel R (2008b) “Who” is saying “what”? Brain-based decoding of human voice and speech. Science 322:970–973

    Article  CAS  PubMed  Google Scholar 

  • Gaab N, Gabrieli JD, Glover GH (2007a) Assessing the influence of scanner background noise on auditory processing. II. An fMRI study comparing auditory processing in the absence and presence of recorded scanner noise using a sparse design. Hum Brain Mapp 28:721–732

    Article  PubMed  Google Scholar 

  • Gaab N, Gabrieli JD, Glover GH (2007b) Assessing the influence of scanner background noise on auditory processing. I. An fMRI study comparing three experimental designs with varying degrees of scanner noise. Hum Brain Mapp 28:703–720

    Article  PubMed  Google Scholar 

  • Galaburda A, Sanides F (1980) Cytoarchitectonic organization of the human auditory cortex. J Comp Neurol 190:597–610

    Article  CAS  PubMed  Google Scholar 

  • Geschwind N, Levitsky W (1968) Human brain: left-right asymmetries in temporal speech region. Science 161:186–187

    Article  CAS  PubMed  Google Scholar 

  • Geyer S, Weiss M, Reimann K, Lohmann G, Turner R (2011) Microstructural parcellation of the human cerebral cortex—from Brodmann’s post-mortem map to in vivo mapping with high-field magnetic resonance imaging. Front Hum Neurosci 5:19

    Article  PubMed Central  PubMed  Google Scholar 

  • Giraud AL, Lorenzi C, Ashburner J, Wable J, Johnsrude I, Frackowiak R, Kleinschmidt A (2000) Representation of the temporal envelope of sounds in the human brain. J Neurophysiol 84:1588–1598

    CAS  PubMed  Google Scholar 

  • Giraud AL, Kleinschmidt A, Poeppel D, Lund TE, Frackowiak RS, Laufs H (2007) Endogenous cortical rhythms determine cerebral specialization for speech perception and production. Neuron 56:1127–1134

    Article  CAS  PubMed  Google Scholar 

  • Glasser MF, Van Essen DC (2011) Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J Neurosci 31:11597–11616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griffiths TD, Warren JD (2004) What is an auditory object? Nat Rev Neurosci 5:887–892

    Article  CAS  PubMed  Google Scholar 

  • Griffiths TD, Buchel C, Frackowiak RS, Patterson RD (1998a) Analysis of temporal structure in sound by the human brain. Nat Neurosci 1:422–427

    Article  CAS  PubMed  Google Scholar 

  • Griffiths TD, Rees G, Rees A, Green GG, Witton C, Rowe D, Buchel C, Turner R, Frackowiak RS (1998b) Right parietal cortex is involved in the perception of sound movement in humans. Nat Neurosci 1:74–79

    Article  CAS  PubMed  Google Scholar 

  • Griffiths TD, Green GG, Rees A, Rees G (2000) Human brain areas involved in the analysis of auditory movement. Hum Brain Mapp 9:72–80

    Article  CAS  PubMed  Google Scholar 

  • Griffiths TD, Warren JD, Scott SK, Nelken I, King AJ (2004) Cortical processing of complex sound: a way forward? Trends Neurosci 27:181–185

    Article  CAS  PubMed  Google Scholar 

  • Grothe B, Pecka M, McAlpine D (2010) Mechanisms of sound localization in mammals. Physiol Rev 90:983–1012

    Article  CAS  PubMed  Google Scholar 

  • Hackett TA, Stepniewska I, Kaas JH (1998) Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. J Comp Neurol 394:475–495

    Article  CAS  PubMed  Google Scholar 

  • Hackett TA, Preuss TM, Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol 441:197–222

    Article  CAS  PubMed  Google Scholar 

  • Hall DA (2003) Auditory pathways: are ‘what’ and ‘where’ appropriate? Curr Biol 13:R406–R408

    Article  CAS  PubMed  Google Scholar 

  • Hall DA, Haggard MP, Akeroyd MA, Palmer AR, Summerfield AQ, Elliott MR, Gurney EM, Bowtell RW (1999) “Sparse” temporal sampling in auditory fMRI. Hum Brain Mapp 7:213–223

    Article  CAS  PubMed  Google Scholar 

  • Hall DA, Summerfield AQ, Goncalves MS, Foster JR, Palmer AR, Bowtell RW (2000) Time-course of the auditory BOLD response to scanner noise. Magn Reson Med 43:601–606

    Article  CAS  PubMed  Google Scholar 

  • Hall DA, Johnsrude IS, Haggard MP, Palmer AR, Akeroyd MA, Summerfield AQ (2002) Spectral and temporal processing in human auditory cortex. Cerebral Cortex 12:140–149

    Article  PubMed  Google Scholar 

  • Hall DA, Chambers J, Akeroyd MA, Foster JR, Coxon R, Palmer AR (2009) Acoustic, psychophysical, and neuroimaging measurements of the effectiveness of active cancellation during auditory functional magnetic resonance imaging. J Acoust Soc Am 125:347–359

    Article  PubMed  Google Scholar 

  • Harms MP, Melcher JR (2002) Sound repetition rate in the human auditory pathway: representations in the waveshape and amplitude of fMRI activation. J Neurophysiol 88:1433–1450

    PubMed  Google Scholar 

  • Hart HC, Palmer AR, Hall DA (2002) Heschl’s gyrus is more sensitive to tone level than non-primary auditory cortex. Hear Res 171:177–190

    Article  PubMed  Google Scholar 

  • Hart HC, Hall DA, Palmer AR (2003) The sound-level-dependent growth in the extent of fMRI activation in Heschl’s gyrus is different for low- and high-frequency tones. Hear Res 179:104–112

    Article  PubMed  Google Scholar 

  • Hart HC, Palmer AR, Hall DA (2004) Different areas of human non-primary auditory cortex are activated by sounds with spatial and nonspatial properties. Hum Brain Mapping 21:178–190

    Google Scholar 

  • Hausfeld L, De Martino F, Bonte M, Formisano E (2012) Pattern analysis of EEG responses to speech and voice: influence of feature grouping. Neuroimage 59: 3641–3651

    Article  PubMed  Google Scholar 

  • Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–2430

    Article  CAS  PubMed  Google Scholar 

  • Hedeen RA, Edelstein WA (1997) Characterization and prediction of gradient acoustic noise in MR imagers. Magn Reson Med 37:7–10

    Article  CAS  PubMed  Google Scholar 

  • Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nat Rev Neurosci 8:393–402

    Article  CAS  PubMed  Google Scholar 

  • Humphries C, Liebenthal E, Binder JR (2010) Tonotopic organization of human auditory cortex. Neuroimage 50:1202–1211

    Article  PubMed Central  PubMed  Google Scholar 

  • Idiyatullin D, Corum C, Park JY, Garwood M (2006) Fast and quiet MRI using a swept radiofrequency. J Magn Reson 181:342–349

    Article  CAS  PubMed  Google Scholar 

  • Imig TJ, Adrian HO (1977) Binaural columns in the primary field (A1) of cat auditory cortex. Brain Res 138:241–257

    Article  CAS  PubMed  Google Scholar 

  • Jancke L, Wustenberg T, Scheich H, Heinze HJ (2002) Phonetic perception and the temporal cortex. Neuroimage 15:733–746

    Article  CAS  PubMed  Google Scholar 

  • Joly O, Ramus F, Pressnitzer D, Vanduffel W, Orban GA (2011) Interhemispheric differences in auditory processing revealed by fMRI in awake rhesus monkeys. Cereb Cortex 22:838–853

    Article  PubMed  Google Scholar 

  • Joris PX, Schreiner CE, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84:541–577

    Article  CAS  PubMed  Google Scholar 

  • Kaas JH, Hackett TA (2000) Subdivisions of auditory cortex and processing streams in primates. Proc Natl Acad Sci U S A 97:11793–11799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kilian-Hutten N, Valente G, Vroomen J, Formisano E (2011) Auditory cortex encodes the perceptual interpretation of ambiguous sound. J Neurosci 31:1715–1720

    Article  PubMed  CAS  Google Scholar 

  • Kilian-Hutten N, Vroomen J, Formisano E (2012) Brain activation during audiovisual exposure anticipates future perception of ambiguous speech. Neuroimage 57:1601–1607

    Article  Google Scholar 

  • Kim JJ, Crespo-Facorro B, Andreasen NC, O’Leary DS, Zhang B, Harris G, Magnotta VA (2000) An MRI-based parcellation method for the temporal lobe. Neuroimage 11:271–288

    Article  PubMed  Google Scholar 

  • King AJ (1998) Auditory system: a neural substrate for frequency selectivity? Curr Biol 8:R25–27

    Article  CAS  PubMed  Google Scholar 

  • Kosaki H, Hashikawa T, He J, Jones EG (1997) Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys. J Comp Neurol 386:304–316

    Article  CAS  PubMed  Google Scholar 

  • Kriegeskorte N (2011) Pattern-information analysis: from stimulus decoding to computational-model testing. Neuroimage 56:411–421

    Article  PubMed  Google Scholar 

  • Krumbholz K, Schonwiesner M, Rubsamen R, Zilles K, Fink GR, von Cramon DY (2005) Hierarchical processing of sound location and motion in the human brainstem and planum temporale. Eur J Neurosci 21:230–238

    Article  PubMed  Google Scholar 

  • Krumbholz K, Eickhoff SB, Fink GR (2007) Feature- and object-based attentional modulation in the human auditory “where” pathway. J Cogn Neurosci 19:1721–1733

    Article  PubMed  Google Scholar 

  • Kusmierek P, Rauschecker JP (2009) Functional specialization of medial auditory belt cortex in the alert rhesus monkey. J Neurophysiol 102:1606–1622

    Article  PubMed Central  PubMed  Google Scholar 

  • Lamme VAF, Roelfsema PR (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci 23:571–579

    Article  CAS  PubMed  Google Scholar 

  • Langers DRM, van Dijk P (2012) Mapping the tonotopic organization in human auditory cortex with minimally salient acoustic stimulation. Cereb Cortex 22:2014–2038

    Article  Google Scholar 

  • Langers DR, Backes WH, van Dijk P (2003) Spectrotemporal features of the auditory cortex: the activation in response to dynamic ripples. Neuroimage 20:265–275

    Article  PubMed  Google Scholar 

  • Langers DR, Van Dijk P, Backes WH (2005) Interactions between hemodynamic responses to scanner acoustic noise and auditory stimuli in functional magnetic resonance imaging. Magn Reson Med 53:49–60

    Article  PubMed  Google Scholar 

  • Langers DR, van Dijk P, Schoenmaker ES, Backes WH (2007) fMRI activation in relation to sound intensity and loudness. Neuroimage 35:709–718

    Article  PubMed  Google Scholar 

  • Leaver AM, Rauschecker JP (2010) Cortical representation of natural complex sounds: effects of acoustic features and auditory object category. J Neurosci 30:7604–7612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leonard CM, Puranik C, Kuldau JM, Lombardino LJ (1998) Normal variation in the frequency and location of human auditory cortex landmarks. Heschl’s gyrus: where is it? Cereb Cortex 8:397–406

    Article  CAS  PubMed  Google Scholar 

  • Lewis JW, Wightman FL, Brefczynski JA, Phinney RE, Binder JR, DeYoe EA (2004) Human brain regions involved in recognizing environmental sounds. Cereb Cortex 14:1008–1021

    Google Scholar 

  • Lewis JW, Brefczynski JA, Phinney RE, Janik JJ, DeYoe EA (2005) Distinct cortical pathways for processing tool versus animal sounds. J Neurosci 25:5148–5158

    Article  CAS  PubMed  Google Scholar 

  • Lewis JW, Talkington WJ, Walker NA, Spirou GA, Jajosky A, Frum C, Brefczynski-Lewis JA (2009) Human cortical organization for processing vocalizations indicates representation of harmonic structure as a signal attribute. J Neurosci 29:2283–2296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ley A, Vroomen J, Hausfeld L, Valente G, De Weerd P, Formisano E (2012) Learning of new sound categories shapes neural response patterns in human auditory cortex. J Neurosci 19:13273–13280

    Article  CAS  Google Scholar 

  • Ley A, Vroomen J, Formisano E (2014) How learning to abstract shapes neural sound representations. Front Neurosci 8:132

    Article  PubMed Central  PubMed  Google Scholar 

  • Liebenthal E, Binder JR, Spitzer SM, Possing ET, Medler DA (2005) Neural substrates of phonemic perception. Cereb Cortex 15:1621–1631

    Article  PubMed  Google Scholar 

  • Liegeois-Chauvel C, Lorenzi C, Trebuchon A, Regis J, Chauvel P (2004) Temporal envelope processing in the human left and right auditory cortices. Cereb Cortex 14:731–740

    Article  PubMed  Google Scholar 

  • Lomber SG, Malhotra S (2008) Double dissociation of ‘what’ and ‘where’ processing in auditory cortex. Nat Neurosci 11:609–616

    Article  CAS  PubMed  Google Scholar 

  • Macaluso E (2006) Multisensory processing in sensory-specific cortical areas. Neuroscientist 12:327–338

    Article  PubMed  Google Scholar 

  • Machens CK, Wehr MS, Zador AM (2004) Linearity of cortical receptive fields measured with natural sounds. J Neurosci 24:1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Maeder PP, Meuli RA, Adriani M, Bellmann A, Fornari E, Thiran JP, Pittet A, Clarke S (2001) Distinct pathways involved in sound recognition and localization: a human fMRI study. Neuroimage 14:802–816

    Article  CAS  PubMed  Google Scholar 

  • Marino J, Schummers J, Lyon DC, Schwabe L, Beck O, Wiesing P, Obermayer K, Sur M (2005) Invariant computations in local cortical networks with balanced excitation and inhibition. Nature Neuroscience 8:194–201

    Article  CAS  PubMed  Google Scholar 

  • Merzenich MM, Brugge JF (1973) Representation of the cochlear partition of the superior temporal plane of the macaque monkey. Brain Res 50:275–296

    Article  CAS  PubMed  Google Scholar 

  • Merzenich MM, Knight PL, Roth GL (1975) Representation of cochlea within primary auditory cortex in the cat. J Neurophysiol 38:231–249

    CAS  PubMed  Google Scholar 

  • Middlebrooks JC, Dykes RW, Merzenich MM (1980) Binaural response-specific bands in primary auditory cortex (AI) of the cat: topographical organization orthogonal to isofrequency contours. Brain Res 181:31–48

    Article  CAS  PubMed  Google Scholar 

  • Miller LM, Recanzone GH (2009) Populations of auditory cortical neurons can accurately encode acoustic space across stimulus intensity. Proc Natl Acad Sci U S A 106:5931–5935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moerel M, De Martino F, Formisano E (2012) Processing of natural sounds in human auditory cortex: tonotopy, spectral tuning and relation to voice-sensitivity. J Neurosci 32:14205–14216

    Article  CAS  PubMed  Google Scholar 

  • Moerel M, De Martino F, Formisano E (2014) An anatomical and functional topography of human auditory cortical areas. Front Neurosci 8:225

    Article  PubMed Central  PubMed  Google Scholar 

  • Morel A, Garraghty PE, Kaas JH (1993) Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. J Comp Neurol 335:437–459

    Article  CAS  PubMed  Google Scholar 

  • Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K (2001) Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuroimage 13:684–701

    Article  CAS  PubMed  Google Scholar 

  • Morosan P, Schleicher A, Amunts K, Zilles K (2005) Multimodal architectonic mapping of human superior temporal gyrus. Anat Embryol (Berl) 210:401–406

    Article  CAS  Google Scholar 

  • Naselaris T, Kay KN, Nishimoto S, Gallant JL (2011) Encoding and decoding in fMRI. Neuroimage 56:400–410

    Article  PubMed Central  PubMed  Google Scholar 

  • Nelken I (2008) Processing of complex sounds in the auditory system. Curr Opin Neurobiol 18:413–417

    Article  CAS  PubMed  Google Scholar 

  • Nourski KV, Brugge JF (2011) Representation of temporal sound features in the human auditory cortex. Rev Neurosci 22:187–203

    PubMed  Google Scholar 

  • Obleser J, Boecker H, Drzezga A, Haslinger B, Hennenlotter A, Roettinger M, Eulitz C, Rauschecker JP (2006) Vowel sound extraction in anterior superior temporal cortex. Hum Brain Mapp 27:562–571

    Article  PubMed  Google Scholar 

  • Obleser J, Zimmermann J, Van Meter J, Rauschecker JP (2007) Multiple stages of auditory speech perception reflected in event-related fMRI. Cerebral Cortex 17:2251–2257

    Article  PubMed  Google Scholar 

  • Overath T, Zhang Y, Sanes DH, Poeppel D (2012) Sensitivity to temporal modulation rate and spectral bandwidth in the human auditory system: fMRI evidence. J Neurophysiol 107:2042–2056

    Article  PubMed Central  PubMed  Google Scholar 

  • Paltoglou AE, Sumner CJ, Hall DA (2011) Mapping feature-sensitivity and attentional modulation in human auditory cortex with functional magnetic resonance imaging. Eur J Neurosci 33:1733–1741

    Google Scholar 

  • Pasley BN, David SV, Mesgarani N, Flinker A, Shamma SA, Crone NE, Knight RT, Chang EF (2012) Reconstructing speech from human auditory cortex. Plos Biol 10:e1001251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pavani F, Macaluso E, Warren JD, Driver J, Griffiths TD (2002) A common cortical substrate activated by horizontal and vertical sound movement in the human brain. Curr Biol 12:1584–1590

    Article  CAS  PubMed  Google Scholar 

  • Peelle JE, Eason RJ, Schmitter S, Schwarzbauer C, Davis MH (2010) Evaluating an acoustically quiet EPI sequence for use in fMRI studies of speech and auditory processing. Neuroimage 52:1410–1419

    Article  PubMed Central  PubMed  Google Scholar 

  • Penhune VB, Zatorre RJ, MacDonald JD, Evans AC (1996) Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex 6:661–672

    Article  CAS  PubMed  Google Scholar 

  • Petkov CI, Kayser C, Augath M, Logothetis NK (2006) Functional imaging reveals numerous fields in the monkey auditory cortex. PLoS Biol 4:e215

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Petkov CI, Kayser C, Steudel T, Whittingstall K, Augath M, Logothetis NK (2008) A voice region in the monkey brain. Nat Neurosci 11:367–374

    Google Scholar 

  • Poeppel D (2001) Pure word deafness and the bilateral processing of the speech code. Cogn Sci 25:679–693

    Article  Google Scholar 

  • Poeppel D (2003) The analysis of speech in different temporal integration windows: cerebral lateralization as ‘asymmetric sampling in time’. Speech Commun 41:245–255

    Article  Google Scholar 

  • Polimeni JR, Fischl B, Greve DN, Wald LL (2010) Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1. Neuroimage 52:1334–1346

    Article  PubMed Central  PubMed  Google Scholar 

  • Rademacher J, Morosan P, Schormann T, Schleicher A, Werner C, Freund HJ, Zilles K (2001) Probabilistic mapping and volume measurement of human primary auditory cortex. Neuroimage 13:669–683

    Article  CAS  PubMed  Google Scholar 

  • Rauschecker JP, Scott SK (2009) Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat Neurosci 12:718–724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rauschecker JP, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci U S A 97:11800–11806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rauschecker JP, Tian B (2004) Processing of band-passed noise in the lateral auditory belt cortex of the rhesus monkey. J Neurophysiol 91:2578–2589

    Article  PubMed  Google Scholar 

  • Rauschecker JP, Tian B, Hauser M (1995) Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268:111–114

    Article  CAS  PubMed  Google Scholar 

  • Ravicz ME, Melcher JR (2001) Isolating the auditory system from acoustic noise during functional magnetic resonance imaging: examination of noise conduction through the ear canal, head, and body. J Acoust Soc Am 109:216–231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ravicz ME, Melcher JR, Kiang NY (2000) Acoustic noise during functional magnetic resonance imaging. J Acoust Soc Am 108:1683–1696

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Recanzone GH (2000) Spatial processing in the auditory cortex of the macaque monkey. Proc Natl Acad Sci U S A 97:11829–11835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Recanzone GH, Cohen YE (2010) Serial and parallel processing in the primate auditory cortex revisited. Behav Brain Res 206:1–7

    Article  PubMed Central  PubMed  Google Scholar 

  • Remedios R, Logothetis NK, Kayser C (2009) Monkey drumming reveals common networks for perceiving vocal and nonvocal communication sounds. Proc Natl Acad Sci U S A 106:18010–18015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Renvall H, Formisano E, Parviainen T, Bonte M, Vihla M, Salmelin R (2012) Parametric merging of MEG and fMRI reveals spatiotemporal differences in cortical processing of spoken words and environmental sounds in background noise. Cereb Cortex 22:132–143

    Article  PubMed  Google Scholar 

  • Riecke L, van Opstal AJ, Goebel R, Formisano E (2007) Hearing illusory sounds in noise: sensory-perceptual transformations in primary auditory cortex. J Neurosci 27:12684–12689

    Article  CAS  PubMed  Google Scholar 

  • Riecke L, Esposito F, Bonte M, Formisano E (2009) Hearing illusory sounds in noise: the timing of sensory-perceptual transformations in auditory cortex. Neuron 64:550–561

    Article  CAS  PubMed  Google Scholar 

  • Riecke L, Walter A, Sorger B, Formisano E (2011) Tracking vocal pitch through noise: neural correlates in nonprimary auditory cortex. J Neurosci 31:1479–1488

    Article  CAS  PubMed  Google Scholar 

  • Rimol LM, Specht K, Weis S, Savoy R, Hugdahl K (2005) Processing of sub-syllabic speech units in the posterior temporal lobe: an fMRI study. Neuroimage 26:1059–1067

    Article  PubMed  Google Scholar 

  • Rivier F, Clarke S (1997) Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas. Neuroimage 6:288–304

    Article  CAS  PubMed  Google Scholar 

  • Romanski LM, Tian B, Fritz J, Mishkin M, Goldman-Rakic PS, Rauschecker JP (1999) Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat Neurosci 2:1131–1136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sadagopan S, Wang X (2009) Nonlinear spectrotemporal interactions underlying selectivity for complex sounds in auditory cortex. J Neurosci 29:11192–11202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santoro R, Moerel M, De Martino F, Goebel R, Uğurbil K, Yacoub E et al (2014) Encoding of natural sounds at multiple spectral and temporal resolutions in the human auditory cortex. PLoS Comput Biol 10:e1003412

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schonwiesner M, Zatorre RJ (2009) Spectro-temporal modulation transfer function of single voxels in the human auditory cortex measured with high-resolution fMRI. Proc Natl Acad Sci U S A 106:14611–14616

    Article  PubMed Central  PubMed  Google Scholar 

  • Schonwiesner M, von Cramon DY, Rubsamen R (2002) Is it tonotopy after all? Neuroimage 17:1144–1161

    Article  PubMed  Google Scholar 

  • Schreiner CE, Winer JA (2007) Auditory cortex mapmaking: principles, projections, and plasticity. Neuron 56:356–365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schreiner CE, Mendelson JR, Sutter ML (1992) Functional topography of cat primary auditory cortex: representation of tone intensity. Exp Brain Res 92:105–122

    Article  CAS  PubMed  Google Scholar 

  • Schwarzbauer C, Davis MH, Rodd JM, Johnsrude I (2006) Interleaved silent steady state (ISSS) imaging: a new sparse imaging method applied to auditory fMRI. Neuroimage 29:774–782

    Article  PubMed  Google Scholar 

  • Scott SK, Johnsrude IS (2003) The neuroanatomical and functional organization of speech perception. Trends Neurosci 26:100–107

    Article  CAS  PubMed  Google Scholar 

  • Scott SK, Blank CC, Rosen S, Wise RJ (2000) Identification of a pathway for intelligible speech in the left temporal lobe. Brain 123(Pt 12):2400–2406

    Article  PubMed  Google Scholar 

  • Seifritz E, Esposito F, Hennel F, Mustovic H, Neuhoff JG, Bilecen D, Tedeschi G, Scheffler K, Di Salle F (2002) Spatiotemporal pattern of neural processing in the human auditory cortex. Science 297:1706–1708

    Article  CAS  PubMed  Google Scholar 

  • Seifritz E, Di Salle F, Esposito F, Herdener M, Neuhoff JG, Scheffler K (2006) Enhancing BOLD response in the auditory system by neurophysiologically tuned fMRI sequence. Neuroimage 29:1013–1022

    Article  PubMed  Google Scholar 

  • Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893

    Article  CAS  PubMed  Google Scholar 

  • Shamma SA, Micheyl C (2010) Behind the scenes of auditory perception. Curr Opin Neurobiol 20:361–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharpee TO, Atencio CA, Schreiner CE (2011) Hierarchical representations in the auditory cortex. Curr Opin Neurobiol 21:761–767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith KR, Okada K, Saberi K, Hickok G (2004) Human cortical auditory motion areas are not motion selective. Neuroreport 15:1523–1526

    Article  PubMed  Google Scholar 

  • Smith KR, Hsieh IH, Saberi K, Hickok G (2010) Auditory spatial and object processing in the human planum temporale: no evidence for selectivity. J Cogn Neurosci 22:632–639

    Article  PubMed  Google Scholar 

  • Staeren N, Renvall H, De Martino F, Goebel R, Formisano E (2009) Sound categories are represented as distributed patterns in the human auditory cortex. Curr Biol 19:498–502

    Article  CAS  PubMed  Google Scholar 

  • Stefanatos GA, Gershkoff A, Madigan S (2005) On pure word deafness, temporal processing, and the left hemisphere. J Int Neuropsychol Soc 11:456–470; discussion 455

    PubMed  Google Scholar 

  • Striem-Amit E, Hertz U, Amedi A (2011) Extensive cochleotopic mapping of human auditory cortical fields obtained with phase-encoding FMRI. PLoS ONE 6:e17832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Talavage TM, Ledden PJ, Benson RR, Rosen BR, Melcher JR (2000) Frequency-dependent responses exhibited by multiple regions in human auditory cortex. Hear Res 150:225–244

    Article  CAS  PubMed  Google Scholar 

  • Talavage TM, Sereno MI, Melcher JR, Ledden PJ, Rosen BR, Dale AM (2004) Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. J Neurophysiol 91:1282–1296

    Article  PubMed  Google Scholar 

  • Theunissen FE, Sen K, Doupe AJ (2000) Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds. J Neurosci 20:2315–2331

    CAS  PubMed  Google Scholar 

  • Tian B, Rauschecker JP (2004) Processing of frequency-modulated sounds in the lateral auditory belt cortex of the rhesus monkey. J Neurophysiol 92:2993–3013

    Article  PubMed  Google Scholar 

  • Tian B, Reser D, Durham A, Kustov A, Rauschecker JP (2001) Functional specialization in rhesus monkey auditory cortex. Science 292:290–293

    Article  CAS  PubMed  Google Scholar 

  • van Atteveldt N, Formisano E, Goebel R, Blomert L (2004) Integration of letters and speech sounds in the human brain. Neuron 43:271–282

    Article  CAS  PubMed  Google Scholar 

  • Von Economo C, Horn L (1930) Uber Windungsrelief, Maße und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede. Z Gesamte Neurol Psychiatrie 130:678–757

    Google Scholar 

  • Wallace MN, Johnston PW, Palmer AR (2002) Histochemical identification of cortical areas in the auditory region of the human brain. Exp Brain Res 143:499–508

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Merzenich MM, Beitel R, Schreiner CE (1995) Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics. J Neurophysiol 74:2685–2706

    CAS  PubMed  Google Scholar 

  • Wang X, Lu T, Snider RK, Liang L (2005) Sustained firing in auditory cortex evoked by preferred stimuli. Nature 435:341–346

    Article  CAS  PubMed  Google Scholar 

  • Warren JD, Griffiths TD (2003) Distinct mechanisms for processing spatial sequences and pitch sequences in the human auditory brain. J Neurosci 23:5799–5804

    CAS  PubMed  Google Scholar 

  • Warren JD, Zielinski BA, Green GG, Rauschecker JP, Griffiths TD (2002) Perception of sound-source motion by the human brain. Neuron 34:139–148

    Article  CAS  PubMed  Google Scholar 

  • Warren JE, Wise RJ, Warren JD (2005) Sounds do-able: auditory-motor transformations and the posterior temporal plane. Trends Neurosci 28:636–643

    Article  CAS  PubMed  Google Scholar 

  • Warren JD, Scott SK, Price CJ, Griffiths TD (2006) Human brain mechanisms for the early analysis of voices. Neuroimage 31:1389–1397

    Article  CAS  PubMed  Google Scholar 

  • Wessinger CM, VanMeter J, Tian B, Van Lare J, Pekar J, Rauschecker JP (2001) Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. J Cogn Neurosci 13:1–7

    Article  CAS  PubMed  Google Scholar 

  • Winer JA, Schreiner CE (eds) (2011) The auditory cortex. Springer, New York

    Book  Google Scholar 

  • Woods DL, Herron TJ, Cate AD, Yund EW, Stecker GC, Rinne T, Kang X (2010) Functional properties of human auditory cortical fields. Front Syst Neurosci 4:155

    Article  PubMed Central  PubMed  Google Scholar 

  • Woolley SM, Fremouw TE, Hsu A, Theunissen FE (2005) Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds. Nat Neurosci 8:1371–1379

    Article  CAS  PubMed  Google Scholar 

  • Yacoub E, Harel N, Uğurbil K (2008) High-field fMRI unveils orientation columns in humans. Proc Natl Acad Sci U S A 105:10607–10612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yin P, Johnson JS, O’Connor KN, Sutter ML (2011) Coding of amplitude modulation in primary auditory cortex. J Neurophysiol 105:582–600

    Article  PubMed Central  PubMed  Google Scholar 

  • Zatorre RJ, Belin P (2001) Spectral and temporal processing in human auditory cortex. Cereb Cortex 11:946–953

    Article  CAS  PubMed  Google Scholar 

  • Zatorre RJ, Bouffard M, Ahad P, Belin P (2002) Where is ‘where’ in the human auditory cortex? Nat Neurosci 5:905–909

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elia Formisano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer New York

About this chapter

Cite this chapter

Formisano, E., Moerel, M., Bonte, M. (2015). Functional MRI of the Auditory Cortex. In: Uludag, K., Ugurbil, K., Berliner, L. (eds) fMRI: From Nuclear Spins to Brain Functions. Biological Magnetic Resonance, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7591-1_16

Download citation

Publish with us

Policies and ethics