Skip to main content

Chronic Sympathetic Innervation of Islets in Transgenic Mice Results in Differential Desensitization of α-Adrenergic Inhibition of Insulin Secretion

  • Chapter
Physiology and Pathophysiology of the Islets of Langerhans

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 426))

Summary

The effects of chronic sympathetic hyperinnervation on pancreatic β-cell insulin secretion were investigated utilizing the in vitro perfused pancreas from transgenic mice. These mice exhibit islet hyperinnervation of sympathetic neurons resulting from overexpression of nerve growth factor in their β-cells (1). The goal was to determine whether sympathetic hyperinnervation increased classic α-adrenergic inhibition of β-cell insulin secretion or, in contrast, down-regulated β-cell sensitivity to adrenergic input resulting in enhanced insulin secretion.

Both fasting and fed blood sugars and pancreatic insulin content were normal in the transgenics. Response of the transgenic perfused pancreas to low glucose (7 mM) was primarily first phase and normal whereas high glucose (22 mM) caused enhanced, rather than reduced, insulin secretion of both first and second phases. The α-antagonist, phentolamine, caused a six-fold increase in glucose-stimulated insulin secretion from the control pancreas, an effect that was blunted for the transgenic pancreas. A similarly blunted response to phentolamine occurred when this agent was superimposed on a combined glucose-forskolin stimulus. (The positive effect on insulin secretion by phentolamine in normal β-cell preparations has arguably been ascribed to non-specific ionic effects.) Therefore, as a test of possible changes in the ATP regulated K+ channel or the linked Ca++ channels, glyburide was perfused during glucose stimulation. Insulin secretion in response to glyburide was increased two fold in the control pancreas. However, with the transgenic pancreas, in contrast to the enhanced response to glucose, the effect of glyburide was almost completely inhibited. It is concluded that: 1) chronic adrenergic hyperinnervation results in enhanced glucose-stimulated insulin secretion by desensitization of a major α-adrenergic inhibitory site(s); and 2) adrenergic hyperinnervation acts directly or indirectly on ion flux to partially inhibit insulin release, an effect which is not desensitized. Since down-regulation of a single α-adrenergic receptor would be expected to desensitize both phenomena the observed differential desensitization indicates that different post receptor events or more than one adrenergic receptor are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.H. Edwards, W.J. Rutter, D. Hanahan, 1989, Directed expression of NGF to pancreatic β cells in transgenic mice leads to selective hyperinnervation of the islets, Cell 58:161–170.

    Article  PubMed  CAS  Google Scholar 

  2. H.G. Coore, P.J. Randle, 1964, Regulation of insulin secretion studied with pieces of rabbit pancreas incubated in vitro, Biochem J 93:66–78.

    PubMed  CAS  Google Scholar 

  3. E. Cerasi, S. Efendic, R. Luft, 1969, Role of adrenergic receptors in glucose-induced insulin secretion in man, Lancet ii:301–302.

    Article  CAS  Google Scholar 

  4. F. Rohner-Jearenaud, B. Jeanrenaud, 1980, Consequences of ventromedical hypothalamic lesions upon insulin and glucagon secretion by subsequently isolated perfused pancreas in the rat, J Clin Invest, 65:902–910.

    Article  Google Scholar 

  5. P.H. Smith, S.C. Woods, D Porte, 1979, Control of the endocrine pancreas by the autonomic nervous system and related neural factors. In: “Integrative Functions of the Autonomic Nervous System,” C.M. Brooks, K. Koizumi, A Sato, eds, Elsevier/North-Holland, Amsterdam, Netherlands, 84–97.

    Google Scholar 

  6. P. Rorsman, K. Bokvist, C. Ammala, P. Arkhammar, P.-O. Berggren, O. Larsson, K. Wahlander, 1991, Activation by adrenaline of a low-conductance G protein-dependent K+ channel in mouse pancreatic B cells, Nature, 349:77–79.

    Article  PubMed  CAS  Google Scholar 

  7. T. Nakaki, T. Nakadate, K. Ishii, R. Kato, 1981, Postsynaptic alpha-2 adrenergic receptors in isolated rat islets of langerhans: inhibition of insulin release and cyclic 3′,5′-adenosine monophosphate accumulation, J Pharmacol Exp Ther 216:607–612.

    PubMed  CAS  Google Scholar 

  8. H.H. Keahey, A.E. Boyd III, D.L. Kunze, 1990, G protein-dependent modification of calcium currents in clonal pancreatic β-cells, J Physiol 257:C1171–C1176.

    Google Scholar 

  9. D. Porte, 1969, Sympathetic regulation of insulin secretion, Arch Intern Med 123:252–260.

    Article  PubMed  CAS  Google Scholar 

  10. R.P. Robertson, J.B. Halter, D. Porte, 1976, A role for a-adrenergic receptors in abnormal insulin secretion in diabetes mellitus, J Clin Invest 57:791–795.

    Article  PubMed  CAS  Google Scholar 

  11. L.A. Campfield, F.J. Smith, 1983, Alteration of islet neurotransmitter sensitivity following ventromedial hypothalamic lesion, Am J Physiol 244:R635–R640.

    PubMed  CAS  Google Scholar 

  12. M.C. Michel, P.A. Insel, 1989, Are there multiple imidazoline binding sites?, TIPS 10:342–344.

    PubMed  CAS  Google Scholar 

  13. G.M. Grodsky, 1989, A new phase in insulin secretion. How will it contribute to our understanding of B-cell function?, Diabetes 38:673–678.

    Article  PubMed  CAS  Google Scholar 

  14. G.M. Grodsky, J.L. Bolaffi, 1992, Desensitization of the insulin-secreting beta cells, J Cell Biochem 48:3–11.

    Article  PubMed  CAS  Google Scholar 

  15. G.G. Weir, J.L. Leahy, S. Bonner-Weir, 1986, Experimental reduction of β-cell mass: implications for the pathogenesis of diabetes, Diabetes Metab Rev 2:125–161.

    Article  PubMed  CAS  Google Scholar 

  16. W.P. Hausdorff, M.G. Caron, R.J. Lefkowitz, 1990, Turning off the signal: desensitization of β-adrenergic receptor function, FASEB J 4:2881–2888.

    PubMed  CAS  Google Scholar 

  17. G.M. Grodsky, R. Fanska, 1974, The in vitro perfused pancreas. In “Methods in Enzymology,” J.G. Hardman, B.W. O’Malley, eds., Academic Press, New York, 363–372.

    Google Scholar 

  18. G.M. Grodsky, A. Heldt, 1984, Methods for the in vitro perfusion of the pancreas., In “Methods in Diabetes Research,” J. Lamer, S.L. Pohl, eds., Wiley and Sons, New York, 137–146.

    Google Scholar 

  19. G.M. Grodsky, C.T. Peng, 1959, Extractable insulin measured by immunochemical assay: effect of tolbutamide, Proc Soc Exp Biol and Med 101:100–103.

    Article  CAS  Google Scholar 

  20. G.M. Grodsky, F. Schmidt-Formby, 1985, Kinetic and quantitative relationships between insulin release and 65Zn efflux from perifused islets, Endocrinology 117:704–710.

    Article  PubMed  CAS  Google Scholar 

  21. M.D.L. O’Connor, H. Landahl, G.M. Grodsky, 1990, Comparison of storage-and signal-limited models of pancreatic insulin secretion, Am J Physiol 238:R378–R389.

    Google Scholar 

  22. G.M. Grodsky, 1972, Threshold distribution hypothesis for packet storage of insulin and its mathematical modeling, J Clin Invest 51:2047–2059.

    Article  PubMed  CAS  Google Scholar 

  23. G.M. Grodsky, Y.H. Ma, B. Cullen, N. Sarvetnick, 1992, Effect on insulin production sorting and secretion by major histocompatibility complex class II gene expression in the pancreatic β cell of transgenic mice, Endocrinology 131:933–938.

    Article  PubMed  CAS  Google Scholar 

  24. S. Lenzen, 1979, Insulin secretion by isolated perfused rat and mouse pancreas, Am J Physiol 236:E391–E400.

    PubMed  CAS  Google Scholar 

  25. O. Berglund, 1987, Lack of glucose-induced priming of insulin release in the perfused mouse pancreas, J Endocrinol 114:185–189.

    Article  PubMed  CAS  Google Scholar 

  26. A. Schulz, A. Hasselblatt, 1989, An insulin-releasing property of imidazoline derivatives is not limited to compounds that block α-adrenoceptors, Naunym-Schmiedebergs Arch Pharmacol 340:321–327.

    CAS  Google Scholar 

  27. T.D. Plant, J.C. Henquin, 1990, Phentolamine and yohimbine inhibit ATP-sensitive K+ channels in mouse pancreatic β-cells, Br J Pharmacol 101:115–120.

    Article  PubMed  CAS  Google Scholar 

  28. A.E. Boyd, 1988, Sulfonylurea receptors, ion channels and fruit flies, Diabetes 37:847–850.

    CAS  Google Scholar 

  29. I. Niki, J.L. Nicks, S.J. Aschroft, 1990, The beta cell glibenclamide receptor is an ADP-binding protein, Biochem J 268:713–718.

    PubMed  CAS  Google Scholar 

  30. J.L. Bolaffi, G. Rodd, Y.H. Ma, G.M. Grodsky, 1990, Effect of glucagon or somatostatin on desensitized insulin secretion, Endocrinology 126:1750–1775.

    Article  PubMed  CAS  Google Scholar 

  31. J.L. Bolaffi, G.G. Rodd, Y.H. Ma, D. Bright, G.M. Grodsky, 1991, The role of Ca++-related events in glucose-stimulated desensitization of insulin secretion, Endocrinology 129:2131–2138.

    Article  PubMed  CAS  Google Scholar 

  32. W.H. Hsu, H. Xiang, A.S. Rajan, A.E. Boyd, 1991, Activation of α2-adrenergic receptors decreases Ca2+ influx to inhibit insulin secretion in a hamster β-cell line: An action mediated by a guanosine triphosphate-binding protein, Endocrinology 128:958–964.

    Article  PubMed  CAS  Google Scholar 

  33. S. Ullrich, C.B. Wollheim, 1988, GTP-dependent inhibition of insulin secretion by epinephrine in permeabilized RINm5F cells, J Biol Chem 263:8615–8620.

    PubMed  CAS  Google Scholar 

  34. C.B. Wollheim, M. Kikuchi, A.E. Renold, G.W.G. Sharp, 1977, Somatostatin-and epinephrine-induced modification of 45Ca++ fluxes in insulin release in rat pancreatic islets maintained in tissue culture, J Clin Invest 60:1165–1173.

    Article  PubMed  CAS  Google Scholar 

  35. S. Ullrich, C.B. Wollheim, 1985, Expression of both α-and α2-adrenoceptors in an insulin secreting cell line: Parallel studies of cytosolic free Ca++ and insulin release, Mol Pharmacol 28:100–106.

    PubMed  CAS  Google Scholar 

  36. A. Robinovitch, E. Cerasi, G.W.G. Sharp, 1978, Adenosine 3′,5′-monophosphate-dependent and independent inhibitory effects of epinephrine on insulin release in rat pancreatic islets, Endocrinology 102:1733–1740.

    Google Scholar 

  37. S.J. Persaud, P.M. Jones, S.L. Howell, 1993, Activation of protein kinase C partially alleviates noradrenaline inhibition of insulin secretion, Biochem J 289:497–501.

    PubMed  CAS  Google Scholar 

  38. S. Santana de Sa, R. Ferrer, E. Rojas, I. Atwater, 1983, Effects of adrenaline and noradrenaline on glucose-induced electrical activity of mouse pancreatic β cell, J Physiol 68:247–258.

    CAS  Google Scholar 

  39. G. Drews, A. Debuyser, M. Henquin, J.C. Henquin, 1990, Galanin and epinephrine act on distinct receptors to inhibit insulin release by the same mechanisms including an increase in K+ permeability of the B-cell membrane, Endocrinology 126:1646–1653.

    Article  PubMed  CAS  Google Scholar 

  40. W.H. Hsu, H. Xiang, A.S. Rajan, A.E. Boyd III, 1991, Activation of α2-adrenergic receptors decreases Ca2+ influx to inhibit insulin secretion in a hamster β-cell line: An action mediated by a guanosine triphosphate-binding protein, Endocrinology 128:958–964.

    Article  PubMed  CAS  Google Scholar 

  41. L. Siconolfi-Baez, M.A. Banerji, H.E. Lebovitz, 1990, Characterization and significance of sulfonylurea receptors, Diabetes Care 13:2–8.

    PubMed  Google Scholar 

  42. H. Schmid-Antomarchi, J. DeWeille, M. Fosset, M. Lazdunski, 1987, The receptor for antidiabetic sulfonylureas controls the activity of the ATP-modulated K+ channel in insulin-secreting cells, J Biol Chem 262: 15840–15844.

    PubMed  CAS  Google Scholar 

  43. C.-G. Ostenson, A.G. Cattaneo, J.C. Doxey, S. Efendic, 1989, a-adrenoceptors and insulin release from pancreatic islets of normal and diabetic rats, Am J Physiol 257 (Endocrinol Metab 20):E439–E443.

    PubMed  CAS  Google Scholar 

  44. G. Koh, Y. Seino, K. Tsuda, S. Nishi, H. Ishida, J. Takeda, H. Fukumoto, T. Taminato, H. Imura, 1992, Effect of the α2-blocker DG-5128 on insulin and somatostatin release from the isolated perfused rat pancreas, Life Sciences 40:1113–1118.

    Article  Google Scholar 

  45. G.M. Grodsky, J.L. Bolaffi, 1992, Desensitization of insulin-secreting beta cells, J of Cellular Biochem 48:3–11.

    Article  CAS  Google Scholar 

  46. W.S. Zawalich, K.A. Zawalich, G.I. Shulman, L. Rossetti, 1990, Chronic in vivo hyperglycemia impairs phosphoinositide hydrolysis and insulin release in isolated perfused rat islets, Endocrinology 126:253–260.

    Article  PubMed  CAS  Google Scholar 

  47. N.G. Morgan, 1987, Regulation of insulin secretion by α2-adrenergic agonists, TIPS 8:369–370.

    CAS  Google Scholar 

  48. C.M. Fraser, S. Arakawa, W.R. McCombie, J.C. Venter, 1989, Cloning, Sequence analysis, and permanent expression of a human α2-adrenergic receptor in chinese hamster overy cells, J of Biol Chem 264:11754–11761.

    CAS  Google Scholar 

  49. H.R. Bourne, A.L. DeFranco, 1989, Signal transduction and intercellular messengers. In “Oncogenes and the Molecular Origins of Cancer,” R. Weinberg, M. Wigler, eds., Cold Spring Harbor Laboratory Press, 97-124.

    Google Scholar 

  50. A. Schmidt, J. Hescheler, S. Offermanns, K. Spicher, K.-D. Hinsch, F.-J. Klinz, J. Codina, L. Birnbaumer, H. Gausepohl, R. Frank, G. Schultz, W. Rosenthal, 1991, Involvement of pertussis toxin-sensitive G-proteins in the hormonal inhibition of dihydropyridine-sensitive Ca2+ currents in an insulin-secretion cell line (RINm5F), J of Biol Chem 266:18025–18033.

    CAS  Google Scholar 

  51. J.L. Benivic, M. Bouvier, M.G. Caron, R.J. Lefkowitz, 1988, Regulation of adenyl cyclase-coupled β-adrenergic receptors, Ann Rev Cell Biol 4:405–428.

    Article  Google Scholar 

  52. J. Garthwaite, 1990, Nitric oxide synthesis linked to activation of excitatory neurotransmitter receptors in the brain. In “Nitric Oxide from L-Arginine: A Bioregulatory System,” Excerpta Medica, New York, 115–137.

    Google Scholar 

  53. L. Birnbaumer, J. Abramowitz, A. Yatani, K. Okabe, R. Matterà, R. Graff, J. Sanford, J. Codina, A.M. Brown, 1990, Roles of G Proteins in Coupling of Receptors to Ionic Channels and Other Effector Systems, Biochem and Molecular Biology 25:225–244.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grodsky, G.M., Ma, Y.H., Edwards, R.H. (1997). Chronic Sympathetic Innervation of Islets in Transgenic Mice Results in Differential Desensitization of α-Adrenergic Inhibition of Insulin Secretion. In: Soria, B. (eds) Physiology and Pathophysiology of the Islets of Langerhans. Advances in Experimental Medicine and Biology, vol 426. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1819-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1819-2_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1821-5

  • Online ISBN: 978-1-4899-1819-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics