Skip to main content

Regulation by Neurotransmitters of Glial Energy Metabolism

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 429))

Abstract

Astrocytes are ideally positioned to couple neuronal activity with energy metabolism. Thus particular astrocytic profiles, the end-feet, surround intraparenchymal capillaries, implying that they form the first cellular barrier that energy substrates entering the brain parenchyma, in particular glucose, encounter. In addition, astrocytes possess receptors and reuptake sites for neurotransmitters, and astrocytic processes ensheath synaptic contacts: these features imply that astrocytes are ideally positioned to sense increases in synaptic activity and to couple them with energy metabolism. We have characterized three metabolic processes regulated by neurotransmitters in primary astrocyte cultures prepared from neonatal mouse cerebral cortex: glycogenolysis, glycogen resynthesis and glycolysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bittar PG, Charnay Y, Pellerin L, Bouras C, Magistretti PJ (1996) Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J. Cereb. Blood Flow Metab. 16: 1079–1089.

    Google Scholar 

  • Cardinaux J-R, Magistretti PJ (1996) Vasoactive intestinal peptide, pituitary adenylate cyclase-activating peptide, and noradrenaline induce the transcription factors CCAAT/enhancer binding protein (C/EBP)-ß and C/EBPS in mouse cortical astrocytes: involvement in cAMP-regulated glycogen metabolism. J. Neurosci. 16: 919–929.

    PubMed  CAS  Google Scholar 

  • Dringen R, Gebhardt R, Hamprecht B (1993) Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res. 623: 208–214.

    Article  PubMed  CAS  Google Scholar 

  • Fellows LK, Boutelle MG, Fillenz M (1993) Physiological stimulation increases nonoxidative glucose metabolism in the brain of the freely moving rat. J. Neurochem. 60: 1258–1263.

    Article  PubMed  CAS  Google Scholar 

  • Fishman RS, Karnovsky ML (1986) Apparent absence of a translocase in the cerebral glucose-6-phosphatase system. J. Neurochem. 46: 371–3781.

    Article  PubMed  CAS  Google Scholar 

  • Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc. Natl. Acad. Sci. USA 83: 1140–1144.

    Google Scholar 

  • Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241: 462–464.

    Article  PubMed  CAS  Google Scholar 

  • Frahm J, Krüger G, Merboldt K-D, Kleinschmidt A (1996) Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man. Magn. Reson. Med. 35: 143–148.

    Google Scholar 

  • Fray AE, Forsyth RJ, Boutelle MG, Fillenz M (1996) The mechanisms controlling physiologically stimulated changes in rat brain glucose and lactate: a microdialysis study. J. Physiol. 496.1: 49–57.

    Google Scholar 

  • Larrabee MG (1995) Lactate metabolism and its effects on glucose metabolism in an excised neural tissue. J. Neurochem. 64: 1734–1741.

    Article  PubMed  CAS  Google Scholar 

  • Magistretti PJ, Manthorpe M, Bloom FE. Varon S (1983) Functional receptors for vasoactive intestinal polypeptide in cultured astroglia from neonatal rat brain. Regul. Pept. 6: 71–80.

    Google Scholar 

  • Magistretti PJ, Morrison JH (1988) Noradrenaline-and vasoactive intestinal peptide-containing neuronal systems in neocortex: functional convergence with contrasting morphology. Neurosci. 24: 367–378.

    Article  CAS  Google Scholar 

  • Magistretti PJ, Morrison JH, Shoemaker WJ, Sapin V, Bloom FE (1981) Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: a possible regulatory mechanism for the local control of energy metabolism. Proc. Natl. Acad. Sci. 78: 6535–6539.

    Google Scholar 

  • Magistretti PJ, Pellerin L (1996a) Cellular mechanisms of brain energy metabolism: relevance to functional brain imaging and to neurodegenerative disorders. Ann. NY Acad. Sci. 777: 380–387.

    Google Scholar 

  • Magistretti Pi, Pellerin L (I 996b) Cellular bases of brain energy metabolism and their relevance to functional brain imaging: evidence for a prominent role of astrocytes. Cerebral Cortex 6: 50–61.

    Google Scholar 

  • Magistretti PJ, Sorg O, Martin J-L (1993) Regulation of glycogen metabolism in astrocytes: physiological, pharmacological, and pathological aspects. In: Astrocytes: pharmacology and function ( Murphy S, ed), p. 243. San Diego: Academic Press.

    Google Scholar 

  • Mcllwain H (1953) Substances which support respiration and metabolic response to electrical impulses in human cerebral tissues. J. Neurol. Neurosurg. Psychiatry 16: 257–266.

    Article  Google Scholar 

  • Morrison JH, Grzanna R, Molliver M, Coyle JT (1978) The distribution and orientation of noradrenergic fibers in neocortex of the rat: An immunofluorescence study. J. Comp. Neurol. 181: 17–40.

    Google Scholar 

  • Pellegri G, Pellerin L, Stella N, Martin J-L, Magistretti PJ (1996a) Cellular localization and characterization of glutamate transporters in cortical neurons and astrocytes. Experientia 52: A82.

    Google Scholar 

  • Pellegri G, Rossier C, Magistretti PJ, Martin J-L (1996b) Cloning, localization and induction of mouse brain glycogen synthase. Mol. Brain Res. 38: 191–199.

    Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad. Sci. USA 91: 10625–10629.

    Google Scholar 

  • Pellerin L, Magistretti PJ (1996) Excitatory amino acids stimulate aerobic glycolysis in astrocytes via an activation of the Na’/K’ ATPase. Dev. Neurosci. 18: 336–342.

    Google Scholar 

  • Pellerin L, Martin J-L, Magistretti PJ (1995) Deoxyglucose uptake and c-fos expression, two markers of neural activation, are differentially stimulated by glutamate in astrocytes and neurons in vitro. Soc. Neurosci. Abstr. 21: 580.

    Google Scholar 

  • Poitry-Yamate CL, Poitry S, Tsacopoulos M (1995) Lactate released by Müller glial cells is metabolized by photoreceptors from mammalian retina. J. Neurosci. 15: 5179–5191.

    PubMed  CAS  Google Scholar 

  • Prichard J, Rothman D, Novotny E, Petroff O. Kuwabara T, Avison M, Howseman A, Hanstock C, Shulman R (1991) Lactate rise detected by ‘H NMR in human visual cortex during physiologic stimulation. Proc. Natl. Acad. Sci. USA 88: 5829–5831.

    Google Scholar 

  • Quach TT, Duchemin AM. Rose C, Schwartz JC (1980) [3H]Glycogen hydrolysis elicited by histamine in mouse brain slices: selective involvement of Hcreceptors. Mol. Pharmacol. 17:301–308.

    Google Scholar 

  • Quach TT, Rose C, Duchemin AM, Schwartz JC (1982) Glycogenolysis induced by serotonin in brain: identification of a new class of receptors. Nature 298: 373–375.

    Article  PubMed  CAS  Google Scholar 

  • Quach TT, Rose C. Schwartz JC (1978) [3H]Glycogen hydrolysis in brain slices: responses to neurotransmitters and modulation of noradrenaline receptors. J. Neurochcm. 30: 1335–1341.

    Google Scholar 

  • Sappey-Marinier D, Calabrese G, Fein G, Hugg JW, Biggins C, Weiner MW (1992) Effect of photic stimulation on human visual cortex lactate and phosphates using ‘H and `’P magnetic resonance spectroscopy. J. Cereb. Blood Flow Metab. 12: 584–592.

    Google Scholar 

  • Schurr A, West CA, Rigor BM (1988) Lactate-supported synaptic function in the rat hippocampal slice preparation. Science 240: 1326–1328.

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C. Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The rCldeoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28: 897–916.

    Article  PubMed  CAS  Google Scholar 

  • Sorg O. Magistretti PJ (1991) Characterization of the glycogenolysis elicited by vasoactive intestinal peptide, noradrenaline and adenosine in primary cultures of mouse cerebral cortical astrocytes. Brain Res. 563: 227–233.

    Article  Google Scholar 

  • Sorg O. Magistretti PJ (1992) Vasoactive intestinal peptide and noradrenaline exert long-term control on glycogen levels in astrocytes: blockade by protein synthesis inhibition. J. Neurosci. 12: 4923–4931.

    Google Scholar 

  • Tsacopoulos M, Magistretti PJ (1996) Metabolic coupling between glia and neurons. J. Neurosci. 16: 877–885.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Magistretti, P.J., Pellerin, L. (1997). Regulation by Neurotransmitters of Glial Energy Metabolism. In: Filogamo, G., Vernadakis, A., Gremo, F., Privat, A.M., Timiras, P.S. (eds) Brain Plasticity. Advances in Experimental Medicine and Biology, vol 429. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9551-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9551-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9553-0

  • Online ISBN: 978-1-4757-9551-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics