Skip to main content

Morphology and Internal Structure of Soot and Carbon Blacks

  • Chapter
Particulate Carbon

Abstract

From the viewpoint of morphology and internal structure soot collected in exhaust gases of engines and carbon blacks are identical materials. They are made of aggregates of pseudospherical particles; the size of individual particles goes from ca. 10 to 500 nm; a single aggregate can include several tens of particles.

The morphology (size and shape) of aggregates can be characterized by electron microscopy, scattering and absorption of light, ultracentrifugation and also adsorption of gases and liquids (pure liquids and solutions).

Electron microscopy has been used to give a two dimensional description of aggregates; the development of Quantimets permitted a quantitative description of soot. The third dimension of carbon black aggregates can be investigated by using electron microscopy combined with stereoscopic methods (observation under two different angles).

Scattering and absorption of light allow one to compute equivalent diameters of aggregated particles.

Ultracentrifugation, carried out on suspensions in water, gives equivalent Stokes diameter distributions of carbon blacks.

A convenient technique has become standard; it is based on the absorption of oil or dibutyl-phthalate in the voids between the particles constituting the aggregates.

Specific surface areas and porosity of soot are currently determined by gas adsorption (essentially nitrogen at the temperature of liquid nitrogen). Iodine adsorption from iodine solution in water has also become standard practice.

The internal structure of carbon blacks (i.e. the crystalline organization of carbon inside the material) has been systematically studied by X-ray diffraction, electron microscopy of oxidized particles, dark field and phase contrast electron microscopy.

The crystalline structure is essentially graphitic (turbostratic). Layer planes of carbon are the basic building blocks of carbon black; they are partially oriented parallel to the surface but also around centers inside the particles.

External layer planes are continuous from one particle to its neighbors. Therefore, in the final material, individual particles have no real existence; the aggregate is the constituent unit of soot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. B. Donnet and A. Voet, “Carbon Black — Physics, Chemistry and Elastomer Reinforcement”, Marcel Dekker Inc. (1976).

    Google Scholar 

  2. J. Lahaye and G. Prado, in “Chemistry and Physics of Carbon”, Edit. by P. L. Walker and P. A. Thrower, Marcel Dekker Inc., Vol. 14 (1978), pp. 168–294.

    Google Scholar 

  3. A. I. Medalia and D. Rivin, in “Characterization of Powder Surfaces”, Edit. by G. D. Parfitt and K. S. W. Sing, Academic Press (1976) pp. 279–351.

    Google Scholar 

  4. L. H. Cohan and J. H. L. Watson, Rubber Age, Vol. 68 (1951), p. 687.

    CAS  Google Scholar 

  5. A. I. Medalia and F. A. Heckman, Carbon, Vol. 7 (1969), p. 562.

    Article  Google Scholar 

  6. C. Fisher and M. Cole, The Microscope, Vol. 16 (2), (1968), p. 81.

    Google Scholar 

  7. C. Fisher, The Microscope, Vol. 19 (1), (1971), p. 1.

    Google Scholar 

  8. W. M. Hess, L. L. Ban and G. C. Mc Donald, Rubber Chem. Technol., Vol. 42 (1969), p. 1209.

    Article  CAS  Google Scholar 

  9. W. M. Hess, G. C. Mc Donald and E. Urban, Rubber Chem. and Technol., Vol. 46 (1), (1973), p. 204.

    Article  CAS  Google Scholar 

  10. E. Redman, F. A. Heckman and J. E. Connolly, “Particle size analysis conference Proceedings”, 3d, (1978), p. 51.

    Google Scholar 

  11. M. Rink, J. Microsc. Oxford, Vol. 107 (1976), p. 267.

    Article  Google Scholar 

  12. H. N. Mercer, A. H. Boyer, P. L. Brusky and M. L. Deviney, Rubber Chem. and Technol., Vol. 49 (4), (1976), p. 1068.

    Article  CAS  Google Scholar 

  13. H. N. Mercer, A. H. Boyer and M. L. Deviney, Rubber Chem. and Technol. Vol. 52 (2), (1979), p. 377.

    Article  CAS  Google Scholar 

  14. E. Redman, F. A. Heckman and J. E. Connoly, Meeting of the Rubber Division, American Chemical Society, Chicago, Ill. 1977; Abstract in Rubber Chem. Technol., Vol. 50 (1977), p. 1000.

    Google Scholar 

  15. J. B. Donnet, C. Eckhardt and A. Voet, Rev. Gen. Gaontchouc Plast. Vol. 44 (5), (1967), p. 627, Vol. 44 (12), (1967), p. 1505.

    CAS  Google Scholar 

  16. S. Premilat and P. Horn, J. Chim. Phys., Vol. 63 (3), (1966), p. 463.

    Google Scholar 

  17. J. C. Ravey and S. Premilat, J. Chim. Phys., Vol. 67 (1), (1970), p. 147.

    CAS  Google Scholar 

  18. J. C. Ravey and S. Premilat, J. Chim. Phys., Vol. 67 (I), (1970), p. 157.

    CAS  Google Scholar 

  19. F. A. Heckman, E. Redman and J. E. Conolly, Complementary Studies of Carbon Black Aggregate Morphology by Analytical Centrifugation and Quantitative Image Analysis -Technical Service Report Cabot Corporation, Spring (1977).

    Google Scholar 

  20. ASTM D 2414–65, Standard Method of Testing, Carbon Black — Dibutyl Phthalate Absorption Number, American Society for Testing and Materials, Philadelphia, Pa., (1966).

    Google Scholar 

  21. B. Schubert, F. P. Ford and F. Lyon, Analysis of Carbon Black, Encyclopedia of Industrial Chemical Analysis John Wiley and Sons, Inc., Vol. 8 (1969), p. 225.

    Google Scholar 

  22. A. I. Medalia, J. Colloid Interf. Sci., Vol. 32 (1970), p. 115.

    Article  CAS  Google Scholar 

  23. M. Bastick, P. Chiche and J. Rappeneau, Les Carbones — Tome II (Masson et Cie), (1965), pp. 24–160.

    Google Scholar 

  24. W. R. Smith, Rev. Gen. Caoutchouc, Vol. 41 (1964), p. 367.

    Google Scholar 

  25. N. N. Avgul and A. V. Kiselev, “Chemistry and Physics of Carbon”, P. L. Walker Jr., Marcel Dekker, New York, Vol. 6 (1970).

    Google Scholar 

  26. W. H. Wade, M. L. Deviney, W. A. Brown, M. H. Knoosch, and D. R. Wallace, Rubber Chem. Technol., Vol. 45 (1972), p. 117.

    Article  CAS  Google Scholar 

  27. ASTM D 1510–65, Method of Tests for Iodine Adsorption Number of Carbon Black, American Society for Testing and Materials, Philadelphia, Pa, (1966).

    Google Scholar 

  28. F. Z. Saleeb and V. A. Kitchener, J. Chem. Soc. (1965), p. 911.

    Google Scholar 

  29. V. C. Abram and M. C. Bennett, J. Colloid Interf. Sci., Vol. 27 (1968), p. 1.

    Article  CAS  Google Scholar 

  30. G. Prado, PhD Dissertation Thesis, Strasbourg University, (1972).

    Google Scholar 

  31. G. Prado, and J. Lahaye, J. Chim, Phys., Vol. 4 (1975), p. 483.

    Google Scholar 

  32. B. E. Waren, J. Chim. Phys. Vol. 2 (1934), p. 551.

    Article  Google Scholar 

  33. J. Mering et J. Maire, Les Carbones, Tome I (Masson & Cie), (1965), p. 162.

    Google Scholar 

  34. A. E. Austin, Proceeding 3rd Conf. on Carbon, (1958), p. 389.

    Google Scholar 

  35. S. Ergun, Carbon, Vol. 6 (1968), p. 141.

    Article  CAS  Google Scholar 

  36. E. A. Kmetko, Proc. 1st and 2nd Conf. on Carbon, (1956), p. 21

    Google Scholar 

  37. H. P. Boehm, Z. Anorg. Allgem. Chem., Vol. 297 (1958), p. 315.

    Article  CAS  Google Scholar 

  38. H. Akamatu and H. Kuroda, Proc. 4th Conf. on Carbon, (1960), p. 363.

    Google Scholar 

  39. V. L. Kasatotshkin, V. M. Lukianovitch, N. M. Popov and K. V. Tschmutov, J. Chim. Phys., Vol. 52 (1964), p. 822.

    Google Scholar 

  40. F. A. Heckman and D. E. Harling, Rubber Chem. Technol. Vol. 39 (1966).

    Google Scholar 

  41. J. B. Donnet and J. C. Borland, Rev. Gen. Caoutchouc, Vol. 41 (1964), p. 407.

    Google Scholar 

  42. A. Oberlin, Carbon, Vol. 17 (1979), p. 7.

    Article  CAS  Google Scholar 

  43. R. D. Heidenreich, W. M. Hess and L. L. Ban, J. Appl. Cryst., Vol. 1 (1968), p. 1.

    Article  Google Scholar 

  44. W. M. Hess, L. L. Ban, F. J. Eckert and V. Chirico, Rubber Chem. Technol., Vol. 41 (1968), p. 356.

    Article  CAS  Google Scholar 

  45. P.A. Marsh, A. Voet, T. J. Mullens and L. D. Price, Carbon, Vol. 9 (1971), p. 797.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lahaye, J., Prado, G. (1981). Morphology and Internal Structure of Soot and Carbon Blacks. In: Siegla, D.C., Smith, G.W. (eds) Particulate Carbon. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6137-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6137-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6139-9

  • Online ISBN: 978-1-4757-6137-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics