Skip to main content

The Evolutionary Origin and Maintenance of Sexual Recombination: A Review of Contemporary Models

  • Chapter

Part of the book series: Evolutionary Biology ((EBIO,volume 33))

Abstract

This review is intended to be a global examination of the various hypotheses for the origin and maintenance of genetic recombination and out-crossing, with a look at the surprisingly limited amounts of experimental evidence that has been obtained in order to distinguish among them. It is designed for the reader who wishes an overview of the current state of this large and complex field. However, it is simply not possible to deal in detail with the many competing and complementary hypotheses without turning the review into a book. We apologize in advance to those whose ideas and contributions may have been left out, or may not have been dealt with in the detail that they would like.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achtman, M., Azuma, T., Berg, D. E.,Ito, Y., Morelli, G. Pan, Z.-J., Suerbaun, S., Thompson, S.A., van der Ende, A., and van Doorn, L.-J., 1999, Recombination and clonal groupingsRichards, within Helicobacter pylori from different geographical regions, Mol. Microbiol. 32: 459–470.

    CAS  Google Scholar 

  • Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., Scherer S. E., Li, P. W., Hoskins, R. A., Galle, R. F., George, R. A., Lewis, S. E., S., Ashburner, M., Henderson, S. N., Sutton, G. G., Wortman, J. R., Yandell, M. D., Zhang, Q., Chen, L. X., Brandon, R. C., Rogers, Y. H., Blazej, R. G., Champe, M., Pfeiffer, B. D., Wan, K. H., Doyle, C., Baxter, E. G., Helt, G., Nelson, C. R., Gabor Miklos, G. L., Abril, J. F., Agbayani, A., An, H. J., Andrews-Pfannkoch, C., Baldwin, D., Ballew, R. M., Basu, A., Baxendale, J., Bayraktaroglu, L., Beasley, E. M., Beeson, K. Y., Benos, P. V., Berman, B. P., Bhandari, D., Bolshakov, S., Borkova, D., Botchan, M. R., Bouck, J., Brokstein, P, Brottier, E, Burtis, K. C., Busam, D. A., Butler, H., Cadieu, E., Center, A., Chandra, I., Cherry, J. M., Cawley, S., Dahlke, C., Davenport, L. B., Davies, E, de Pablos, B., Delcher, A., Deng, Z., Mays, A. D., Dew, I., Dietz, S. M., Dodson, K., Doup, L. E., Downes, M., Dugan-Rocha, S., Dunkov, B. C., Dunn, E, Durbin, K. J., Evangelista, C. C., Ferraz, C., Ferrier, S., Fleischmann, W., Fosler, C., Gabrielian, A. E., Garg, N. S., Gelbart, W. M., Glasser, K., Glodek, A., Gon, G. F., Gorrell, J. H., Gu, Z., Guan, P., Harris, M., Harris, N. L., Harvey, D., Heiman, T. J., Hernandez, J. R., Houck, J., Hostin, D., Houston, K. A., Howland, T. J., Wei, M. H., Ibegwam, C., Jalali, M., Kalush, R, Karpen, G. H., Ke, Z., Kennison, J. A., Ketchum, K. A., Kimmel, B. E., Kodira, C. D., Kraft, C., Kravitz, S., Kulp, D., Lai, Z., Lasko, E, Lei, Y., Levitsky, A. A., Li, J., Li, Z., Liang, Y., Lin, X., Liu, X., Mattei, B., McIntosh, T. C., McLeod, M. E, McPherson, D., Merkulov, G., Milshina, N. V., Mobarry, C., Morris, J., Moshrefi, A., Mount, S. M., Moy, M., Murphy, B., Murphy, L., Muzny, D. M., Nelson, D. L., Nelson, D. R., Nelson, K. A., Nixon, K., Nusskern, D. R., Pacleb, J. M, Palazzolo, M., Pittman, G. S., Pan, S., Pollard, J., Puri, V., Reese, M. G., Reinert, K., Remington, K., Saunders, R. D., Scheeler, R, Shen, H., Shue, B. C., Siden-Kiamos, I., Simpson, M., Skupski, M. E, Smith, T., Spier, E., Spradling, A. C., Stapleton, M., Strong, R., Sun, E., Svirskas, R., Tector, C., Turner, R., Venter, E., Wang, A. H., Wang, X., Wang, Z. Y., Wassarman, D. A., Weinstock, G. M., Weissenbach, J., Williams, S. M., Woodage, T., Worley, K. C., Wu, D., Yang, S., Yao, Q. A., Ye, J., Yeh, R. F, Zaveri, J. S., Zhan, M., Zhang, G., Zhao, Q., Zheng, L., Zheng, X. H., Zhong, F. N., Zhong, W., Zhou, X., Zhu, S., Zhu, X., Smith, H. O., Gibbs, R. A., Myers, E. W., Rubin, G. M., and Venter, J. C., 2000, The genome sequence of Drosophila melanogaster, Science 287: 2185–2195.

    Google Scholar 

  • Andersson, D. I., and Hughes, D., 1996, Mullér’s ratchet decreases fitness of a DNA-based microbe, Proc. Natl. Acad. Sci. USA, 93: 906–907.

    Article  PubMed  CAS  Google Scholar 

  • Akrigg, A., and Ayad, S. R., 1970, Studies on the competence-inducing factor of Bacillus subtilis, Biochem. J., 117: 397–403.

    PubMed  CAS  Google Scholar 

  • Akrigg, A., Ayad, S. R., and Barker, G. R., 1967, The nature of a competence-inducing factor

    Google Scholar 

  • Achtman, M., Azuma, T., Berg, D. E., Ito, Y., Morelli, G., Pan, Z.-J., Suerbaum, S., Thompson, S. A., van der Ende, A., and van Doom, L.-J., 1999, Recombination an in Bacillus subtilis, Biochemical And Biophysical Research Communications, 28: 1062–1067.

    Google Scholar 

  • Albritton, W. L., Setlow, J. K., Thomas, M., Sottnek, F, and Steigerwalt, A. G., 1984, Heterospecific transformation in the genus Haemophilus, Molecular And General Genetics, 193: 358–363.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, D. I., and Hughes, D., 1996, Muller’s ratchet decreases fitness of a DNA-based microbe. Proc. Natl. Acad. Sci. USA, 93: 906–907.

    Article  PubMed  CAS  Google Scholar 

  • Anker, P., Stroun, M., Gahan, P., Rossier, A., and Greppin, H., 1971, Natural release of bacterial nucleic acids into plant cells and crown gall induction, in: ( L. Ledoux, ed.), International Symposium On Uptake Of Informative Molecules By Living Cells, (pp. 193–200 ). American Elsevier Publishing, Inc., New York.

    Google Scholar 

  • Bartolomei, M. S., and Tilghman, S. M., 1997, Genomic imprinting in mammals, Ann. Rev. Genet., 31: 493–525.

    Article  PubMed  CAS  Google Scholar 

  • Barton, S. C., Surani, M. A. H., and Norris, M. L., 1984, Role of paternal and maternal genomes in mouse development, Nature, 311: 374–376.

    Article  PubMed  CAS  Google Scholar 

  • Bataillon, T., 2000, Estimation of spontaneous genome-wide mutation rate parameters: whither beneficial mutations? Heredity, 84: 497–501.

    Article  PubMed  Google Scholar 

  • Bateman, A. J., 1959, The viability of near-normal irradiated chromosomes, Internat. J. Rad. Biol. 1: 170–180.

    Article  Google Scholar 

  • Beach, D. H., and Klar, A. J., 1984, Rearrangements of the transposable mating-type cassettes of fission yeast, EMBO J., 3: 603–610.

    PubMed  CAS  Google Scholar 

  • Behnke, D., 1981, Plasmid transformation of Streptococcus sanguis (Challis) occurs by circular and linear molecules, Mol. Gen. Genet., 181: 490–497.

    Article  Google Scholar 

  • Bell, G., 1982, The Masterpiece of Nature: the evolution and genetics of sexuality, University of California Press, Los Angeles.

    Google Scholar 

  • Bell, G., 1985, Two theories of sex and variation, Experientia, 41. 1235–1245.

    Article  PubMed  CAS  Google Scholar 

  • Bell, G., 1988a, Sex and Death in Protozoa: The History of an Obsession, Cambridge University Press, Cambridge.

    Google Scholar 

  • Bell, G., 19886, Uniformity and diversity in the evolution of sex, in The Evolution of Sex, (R. E. Michod and B. R. Levin, eds.), pp.126–138, Sinauer Associates, Inc., Sunderland, Mass.

    Google Scholar 

  • Bell, G., 1993, The sexual nature of the eukaryote genome, J. Hered., 84: 351–359.

    PubMed  CAS  Google Scholar 

  • Bengtsson, B. 0., 1985, Biased gene conversion as the primary function of recombination, Genetical Research, 47: 771–780.

    Google Scholar 

  • Bengtsson, B. 0., 1990, The effect of biased conversion on the mutation load, Genet. Res., 55: 183–187.

    CAS  Google Scholar 

  • Bengtsson, B. 0., 1992, Deleterious mutations and the origin of the meiotic ploidy cycle, Genetics, 131: 741–744.

    CAS  Google Scholar 

  • Bernstein, C., 1979, Why are babies young? Perspect. Biol. Med., 22: 539–544.

    PubMed  CAS  Google Scholar 

  • Bernstein, C., 1987, Damage in DNA of an infecting phage T4 shifts reproduction from asexual to sexual allowing rescue of its genes, Genet. Res., 49: 183–189.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, C., and Bernstein, H., 1991, Aging, Sex, and DNA repair, Academic Press, San Diego.

    Google Scholar 

  • Bernstein, C., and Chen, D., 1987, Recombinational repair of hydrogen-peroxide induced damages in DNA of phage T4, Mut. Res., 184: 87–98.

    Article  Google Scholar 

  • Bernstein, C., and Johns, V., 1989, Sexual reproduction as a response to H202 damage in Schizosaccharomyces pombe, J. B act., 171: 1893–1897.

    CAS  Google Scholar 

  • Bernstein, H., Byerly, H., Hopf, R, and Michod, R., 1985a, DNA repair and complementation: The major factors in the origin and maintenance of sex, in: The Origin and Evolution of Sex ( H. O. Halvorson and A. Monroy, eds.) Vol. 7 pp. 29–45, Marine Biological Laboratory, Woods Hole, Massachusetts: Alan R. Liss Inc., New York.

    Google Scholar 

  • Bernstein, H., Byerly, H. C., Hopf, E A., and Michod, R. E., 1984, Origin of sex. J. Theor. Bio., 110: 323–351.

    Article  CAS  Google Scholar 

  • Bernstein, H., Byerly, H. C., Hopf, F A., and Michod, R. E., 1985b, The evolutionary role of recombinational repair and sex, Int. Rev. Cyt., 96: 1–28.

    Article  CAS  Google Scholar 

  • Bernstein, H., Byerly, H. C., Hopf, F. A., and Michod, R. E., 1985c, Gentic damage, mutation, and the evolution of sex, Science, 229: 1277–1281.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, H., Byerly, H. C., Hopf, E A., and Michod, R. E., 1985d, Sex and the emergence of species, J. Theor. Bio., 117: 665–690.

    Article  CAS  Google Scholar 

  • Bernstein, H., Byerly, H. C., Hopf, E A., and Michod, R. E., 1987, The molecular basis of the evolution of sex, Adv. Genet., 24: 323–370.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, H., Byerly, H. C., Hopf, E A., and Michod, R. E., 1988, Is meiotic recombination an adaptation for repairing DNA, producing genetic variation, or both? in: The Evolution of Sex ( R. E. Michod and B. R. Levin, eds.), pp. 139–160, Sinauer Associates, Sunderland.

    Google Scholar 

  • Bernstein, H., Byers, G. S., and Michod, R. E., 1981, Evolution of sexual reproduction: importance of DNA repair, complementation, and variation, Am. Nat., 117 :537–549.

    Google Scholar 

  • Bertani, G., and Baresi, L., 1987, Genetic transformation in the methanogen Methanococcus voltae PS, J. Bact., 169: 2730–2738.

    PubMed  CAS  Google Scholar 

  • Bierzychudek, P., 1987, Resolving the paradox of sexual reproduction: A review of experimental tests, in: The Evolution of Sex and its Consequences ( S. C. Stearns, eds.), pp. 163–174, Sinauer Associates, Sunderland.

    Google Scholar 

  • Birdsell, J., and Wills, C., 1996, Significant competitive advantage conferred by meiosis and syngamy in the yeast Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, 93: 908–912.

    Article  PubMed  CAS  Google Scholar 

  • Birky, C. W. Jr., 1978, Transmission genetics of mitochondria and chloroplaste, Ann. Rev. Genet. 12: 471–512.

    Article  PubMed  Google Scholar 

  • Birky, C. W., and Walsh, J. B., 1988, Effects of linkage on rates of molecular evolution, Proc. Natl. Acad. Sci., USA, 85: 6414–6418.

    Article  PubMed  CAS  Google Scholar 

  • Bodmer, W. F, 1972, The evolution of recombination mechanisms in bacteria, in: Uptake Of Informative Molecules By Living Cells ( L. Ledoux, ed.), pp. 130–139, North-Holland Publishing Company, American Elsevier Publishing Company, Amsterdam, London, New York.

    Google Scholar 

  • Bowring, F. J., and Catchesise, D. E. A., 1996, Gene conversion alone accounts for more than 90% of recombination events at the am locus of Neurospora crassa, Genetics, 143: 129–136.

    Google Scholar 

  • Bresler, S. E., 1975, Theory of misrepair mutagenesis, Mut. Res., 29: 467–472.

    Article  Google Scholar 

  • Burt, A., and Bell, G., 1987, Mammalian chiasma frequencies as a test of two theories of recombination, Nature, 326: 803–805.

    Article  PubMed  CAS  Google Scholar 

  • Butcher, D., 1995, Muller’s ratchet, epistasis and mutation effects, Genetics, 141: 431–437.

    PubMed  CAS  Google Scholar 

  • Carlson, C. A., Pierson, L. S., Rosen, J. J., and Ingraham, J. L., 1983, Pseudomonas stutzeri and related species undergo natural transformation, Z Bact., 153: 93–99.

    CAS  Google Scholar 

  • Catlin, W., 1956, Extracellular deoxyribonucleic acid of bacteria and a deoxyribonuclease inhibitor, Science 124: 441–442.

    Article  PubMed  CAS  Google Scholar 

  • Catlin, B. W., 1960, Transformation of Neisseria meningitidis by deoxyribonucleates from cells and from culture slime, J. Bact., 79: 579–590.

    PubMed  CAS  Google Scholar 

  • Cattanach, B. M., and Kirk, M., 1985a, Differential activity of maternally and paternally derived chromosome regions in mice, Nature, 315: 496–498.

    Article  PubMed  CAS  Google Scholar 

  • Cedar, H., 1988, DNA methylation and gene activity. Cell, 53: 3–4.

    Article  PubMed  CAS  Google Scholar 

  • Chao, L., 1990, Fitness of RNA viruses decreased by Muller’s ratchet, Nature, 348: 454–455.

    Article  PubMed  CAS  Google Scholar 

  • Chao, L., Tran, T., and Matthews, C., 1992, Muller’s ratchet and the advantage of sex in the RNA virus 06, Evolution, 46: 289–299.

    Article  Google Scholar 

  • Charlesworth, B., 1978, Model for evolution of Y chromosomes and dosage compensation, Proc. Natl. Acad. Sci. USA, 75: 5618–5622.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, D., and Charlesworth, B., 1995, Quantitative genetics in plants: the effect of the breeding system on genetic variability, Evolution 49: 911–920.

    Article  Google Scholar 

  • Charlesworth, D., Morgan, M. T., and Charlesworth, B., 1993, Mutation accumulation in finite outbreeding and inbreeding populations, Genet. Res., 61: 39–56.

    Article  Google Scholar 

  • Chauvat, F, Astier, C., Vedel, F., and Joset-Espardellier, F, 1983, Transformation in the cyanobacterium Synechococcus R2: improvement of efficiency; role of the pUH24 plasmid, Mol. Gen. Genet., 191:39–45.

    Google Scholar 

  • Chovnick, A., Ballantyne, G. H., Baillie, D. L., and Holm, D. G., 1970, Gene conversion in higher organisms: Half-tetrad analysis of recombination within the rosy cistron of Drosophila melanogaster, Genetics, 66: 315–329.

    PubMed  CAS  Google Scholar 

  • Clark, A. G., and Wang, L., 1997, Epistasis in measured genotypes: Drosophila P-element insertions, Genetics, 147: 157–163.

    PubMed  CAS  Google Scholar 

  • Clarke, D. K., Duarte, E. A., Elena, S. E, Moya, A., Domingo, E., and Holland, J., 1994, The red queen reigns in the kingdom of RNA viruses, Proc. Natl. Acad. Sci. USA, 91: 4821–4824.

    Article  PubMed  CAS  Google Scholar 

  • Cleveland, L. R., 1947, The origin and evolution of meiosis, Science, 105: 287–288.

    Article  PubMed  CAS  Google Scholar 

  • Courtois, J., Courtois, B., and Guillaume, J., 1988, High-frequency transformation of Rhizobium meliloti, J. Bact., 170: 5925–5927.

    PubMed  CAS  Google Scholar 

  • Cox, E. C., and Gibson, T. C., 1974, Selection for high mutation rates in chemostats, Genetics, 77: 169–184.

    PubMed  CAS  Google Scholar 

  • Crouse, H., 1960, The controling element in sex chromosome behavior in Sciara, Genetics, 45: 1429–1443.

    PubMed  CAS  Google Scholar 

  • Crow, J., and Kimura, M., 1965, Evolution in sexual and asexual populations, Am. Nat., XCIX: 439–450.

    Google Scholar 

  • Crow, J., and Kimura, M., 1969, Evolution in sexual and asexual populations: a reply, Am. Nat. 103: 89–91.

    Google Scholar 

  • Crow, J. E, and Kimura, M., 1970, An Introduction To Population Genetics Theory, Harper and Row, New York.

    Google Scholar 

  • Cummings, D. J., MacNeil, I. A., Domenico, J., and Matsuura, E. T., 1985, Excision-amplification of mitochondrial DNA during senescence in Podospora anserina. DNA sequence analysis of three unique “plasmids”, J. Mol. Bio. 185: 659–680.

    Google Scholar 

  • Cupples, D. A., Van Etten, J. L., Burbank, D. E., Lane, L. C., and Vidaver, A. K., 1980, In vitro translation of three bacteriophage 46 RNAs, J. Virology, 35: 249–251.

    Google Scholar 

  • Daly, M. J., and Minton, K. W., 1995, Interchromosomal recombination in the extremely radioresistant bacterium Deinococcus radiodurans, J. Bact., 177: 5495–5505.

    PubMed  CAS  Google Scholar 

  • Davies, E. K., Peters, A. D., and Keightley, P. D., 1999, High frequency of cryptic deleterious mutations in Caenorhabditis elegans., Science 285: 1748–1751.

    Article  PubMed  CAS  Google Scholar 

  • Davies, P. J., Evans, W. E., and Parry, J. M., 1975, Mitotic recombination induced by chemical and physical agents in the yeast Saccharomyces cerevisiae, Mut. Res., 29: 301–314.

    Google Scholar 

  • Dee, J., 1982, Genetics of Physarum polycephalum, in: Cell Biology Of Physarum and Didymium ( J. W. Daniel, ed.), pp. 211–251, Academic Press, New York.

    Chapter  Google Scholar 

  • Deng, H.-W., and Lynch, M., 1996, Estimation of deleterious-mutation parameters in natural populations, Genetics 144: 349–360.

    PubMed  CAS  Google Scholar 

  • Deng, H.-W., and Lynch, M., 1997, Inbreeding depression and inferred deleterious mutation parameters in Daphnia, Genetics 147: 147–155.

    PubMed  CAS  Google Scholar 

  • Dennis, E. S., and Brettell, R. I. S., 1990, DNA methylation of maize transposable elements is correlated with activity, Phil. Trans. R. Soc. Lond., B, 326: 217–229.

    Google Scholar 

  • Denver, D. R., Morris, K., Lynch, M., Vassilieva, L., and Thomas, W. K., 2000, High direct estimate of the mutation rate in the mitochondrial genome of Caenorhabditis elegans, Science 289: 2342–2344.

    Article  PubMed  CAS  Google Scholar 

  • De Visser, J. A. G. M., Hoekstra, R. E, and van den Ende, H., 1996, The effect of sex and dele- terious mutations on fitness in Chlamydomonas Proc. R. Soc. Land., B, 263: 193–200.

    Article  Google Scholar 

  • De Visser, J. A. G. M., Hoekstra, R. E, and van den Ende, H., 1997a, An experimental test for synergistic epistasis and its application in Chlamydomonas, Genetics, 145: 815–819.

    PubMed  Google Scholar 

  • De Visser, J. A. G. M., Hoekstra, R. E, and van den Ende, H., 1997b, Test of interaction between genetic markers that affect fitness in Aspergillus niger, Evolution, 51: 1499–1505.

    Article  Google Scholar 

  • Doerfler, W., Hoeveler, A., Weisshaar, B., Dobrzanski, E, Knebel, D., Langner, K., Achten, S., and Muller, U., 1989, Promoter Inactivation or inhibition by sequence-specific methyla-tion and mechanisms of reactivation, Cell Biophysics, 15: 21–27.

    PubMed  CAS  Google Scholar 

  • Dougherty, E. C., 1955, Comparative evolution and the origin of sexuality, Syst. Zool., 4: 145–190.

    Google Scholar 

  • Drake, J. W., 1974, The role of mutation in bacterial evolution, Symp. Soc. Gen. Microbiol., 24: 41–58.

    Google Scholar 

  • Drake, J. W.. 1999, The distribution of rates of spontaneous mutation over viruses, prokaryotes, and eukaryotes, Ann. N. Y. Acad. Sci., 18: 100–107.

    Article  Google Scholar 

  • Drake, J. W., and Holland, J. J., 2000, Mutation rates among RNA viruses, Proc. Natl. Acad. Sci. USA, 96:13, 910–13, 913.

    Google Scholar 

  • Duarte, E., Clarke, D., Domingo, E., and Holland, J.,1992, Rapid fitness losses in mammalian RNA virus clones due to Muller’s ratchet, Proc. Nad. Acad. Sci. USA, 89: 6015–6019.

    Google Scholar 

  • Dubnau, D., 1991, Genetic competence in Bacillus subtilis, Microbiol. Rev., 55: 395–424.

    PubMed  CAS  Google Scholar 

  • Dubnau, D., 1999, DNA uptake in bacteria. Ann. Rev. Microbiol., 53: 217–244.

    Article  CAS  Google Scholar 

  • Durand, J., Birdsell, J. A., and Wills, C., 1993, Pleiotropic effects of heterozygosity at the mating-type locus of the yeast Saccharomyces cerevisiae on repair, recombination, and transformation, Mut. Res., 290: 239–247.

    Article  CAS  Google Scholar 

  • Dybdahl, M. F., and Lively, C. M., 1995, Diverse, endemic and polyphyletic clones in mixed populations of the freshwater snail Potamopyrgus antipodarum, J. Evol. Bio., 8: 385–398.

    Article  Google Scholar 

  • Dybdahl, M. F., and Lively, C. M., 1998, Host-parasite coevolution: Evidence for rare advantage and time-lagged selection in a natural population, Evolution, 52: 1057–1066.

    Article  Google Scholar 

  • Eigen, M., Gardiner, W., Schuster, P., and Winkler-Oswatitsch, R., 1981, The origin of genetic information, Sci. Am., 244: 88–119.

    Article  PubMed  CAS  Google Scholar 

  • Elena, S. E, and Lenski, R. E., 1997, Test of synergistic interactions among deleterious mutations in bacteria, Nature, 390: 395–398.

    Article  PubMed  CAS  Google Scholar 

  • Eshel, I., and Feldman, M. W., 1970, On the evolutionary effects of recombination, Theor. Pop. Bio., 1: 88–100.

    Article  CAS  Google Scholar 

  • Esposito, M. S., and Wagstaff, J. E., 1981, Mechanisms of mitotic recombination, in: The Molecular Biology of the Yeast Saccharomyces ( J. Strathern, E. Jones, and J. Broach, eds.), pp. 341–370, Cold Spring Harbor Laboratory, Cold Spring Harbor.

    Google Scholar 

  • Eyre-Walker, A., and Keightley, P. D., 1999, High genomic deleterious mutation rates in hominids, Nature 397: 344–347.

    Article  PubMed  CAS  Google Scholar 

  • Fabre, R, and Roman, H., 1977, Genetic evidence for inducibility of recombination competence in yeast, Proc. Natl. Acad. Sci. USA, 74: 1667–1671.

    Article  PubMed  CAS  Google Scholar 

  • Felkner, I. C., and Wyss, 0., 1964, A substance produced by competent Bacillus cereus 569 cells that affects transformability, Biochem. & Biophys. Res. Comm., 16: 94–99.

    Article  CAS  Google Scholar 

  • Felsenstein, J., 1974, The evolutionary advantage of recombination, Genetics, 78:737–756. Felsenstein, J., 1988, Sex and the evolution of recombination, in: The Evolution of Sex ( R. E. Michod and B. R. Levin, eds.), pp. 74–86, Sinauer and Associates, Sunderland.

    Google Scholar 

  • Fisher, R. A., 1930, The Genetical Theory of Natural Selection, Clarendon Press, Oxford.

    Google Scholar 

  • Fisher, R. A., 1935, The sheltering of lethals, Am. Nat., 69: 446–455.

    Article  Google Scholar 

  • Fogel, S., and Hurst, D. D., 1963, Coincidence relations between gene conversion and mitotic recombination in Saccharomyces, Genetics, 48: 321–328.

    PubMed  CAS  Google Scholar 

  • Friedberg, E. C., 1988, Deoxyribonucleic acid repair in the yeast Saccharomyces cerevisiae, Microbio. Rev., 52: 70–102.

    CAS  Google Scholar 

  • Friis, J., and Roman, H., 1968, The effect of the mating-type alleles on intragenic recombination in yeast, Genetics, 59: 33–36.

    PubMed  CAS  Google Scholar 

  • Frischer, M. E., Thurmond, J. M., and Paul, J. H., 1990, Natural plasmid transformation in a high-frequency-of-transformation marine Vibrio strain, App. Environ. Microbiol., 56: 3439–3444.

    CAS  Google Scholar 

  • Fry, J. D., Keightley, P. D., Heinsohn, S. L., and Nuzhdin, S. V., 1999, New estimates of the rates and effects of mildly deleterious mutation in Drosophila melanogaster, Proc. Natl. Acad. Sci. USA, 96: 574–579.

    Article  PubMed  CAS  Google Scholar 

  • Futuyma, D. J., 1986, Evolutionary Biology, Sinauer Associates, Sunderland.

    Google Scholar 

  • Gabriel, W., Lynch, M., and Burger, R., 1993, Muller’s ratchet and mutational meltdowns, Evolution, 47: 1744–1757.

    Article  Google Scholar 

  • Garcia-Dorado, A., 1997, The rate and effects distribution of viability mutation in Drosophila: minimum distance estimation. Evolution, 51: 1130–1139.

    Article  Google Scholar 

  • Ghiselin, M. T., 1974, The Economy of Nature and the Evolution of Sex, University of California Press, Berkeley.

    Google Scholar 

  • Giannelli, E, Anagnostopoulos, T., and Green, P. M., 1999, Mutation rates in humans. II. Sporadic mutation-specific rates and rate of detrimental human mutations inferred from Hemophilia B, Am. J. Hum. Genet., 65: 1580–1587.

    Article  PubMed  CAS  Google Scholar 

  • Giannelli, E, and Green, P. M., 2000, The X chromosome and the rate of deleterious mutations in humans, Am. J. Hum. Genet., 67: 515–517.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, T. C., Scheppe, M. L., and Cox, E. C., 1970, Fitness of an Escherichia coli mutator gene, Science, 169: 686–688.

    Article  PubMed  CAS  Google Scholar 

  • Gillin, E D., and Nossal, N. G., 1976, Control of mutation frequency by bacteriophage T4 DNA polymerase: I. The CB120 antimutator DNA polymerase is defective in strand displacement, J. Biol. Chem., 251: 5219–5224.

    PubMed  CAS  Google Scholar 

  • Goldberg, I. D., Gwinn, D. D., and Thorne, C. B., 1966, Interspecies transformation between Bacillus subtilis and Bacillus licheniformis, Biochem. & Biophys. Res. Comm., 23: 543–548.

    Article  CAS  Google Scholar 

  • Goodgal, S. H., 1982, DNA uptake in Haemophilus transformation, Ann. Rev. Genet., 16: 169–192.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, S. D., and Scocca, J. J., 1988, Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae, Proc. Natl. Acad. Sci. USA, 85: 6982–6986.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, A. J. E, Gelbart, W. M., Miller, J. H., and Lewontin, R. C., 1999, Modern Genetic Analysis, W. H. Freeman & Co., New York.

    Google Scholar 

  • Grigorieva, G., and Shestakov, S., 1982, Transformation in the cyanobacterium Synechosystis sp. 6803, FEMS Microbiol. Lett., 13: 367–370.

    Google Scholar 

  • Gromkova, R., and Goodgal, S., 1979, Transformation by plasmid and chromosomal DNAs Haemophilus parainfluenzae, Biochem. and Biophys. Res. Comm., 88: 1428 1434.

    Google Scholar 

  • Guenther, C., 1906, Darwinism and the Problems of Life. A Study of Familiar Animal Life (McCabe, J., Trans.), A. Owen publishing, London.

    Chapter  Google Scholar 

  • Haas, R., Meyer, T. F., and van Putten, J. M. P., 1993, Aflagellated mutants of Helicobacter pylori generated by genetic transformation of naturally competent strains using transposon shuttle mutagenesis, Mol. Microbiol., 8: 753–760.

    Article  PubMed  CAS  Google Scholar 

  • Hadchouel, M., Farza, H., Simon, D., Tiollais, E, and Pourcel, C., 1987, Maternal inhibition of hepatitis B surface antigen gene expression in transgenic mice correlates with de novo methylation, Nature, 329: 454–456.

    Article  PubMed  CAS  Google Scholar 

  • Haigh, J.,1978, The accumulation of deleterious genes in a population-Muller’s ratchet, Theor. Pop. Bio., 14: 251–267.

    Google Scholar 

  • Hamilton, W. D., Axelrod, R., and Tanese, R., 1990, Sexual reproduction as an adaptation to resist parasites (a review), Proc. Natl. Acad. Sci. USA, 87: 3566–3573.

    Article  PubMed  CAS  Google Scholar 

  • Hanley, K. A., Fisher, R. N., and Case, T. J., 1995, Lower mite infestations in an asexual gecko compared with its sexual ancestors, Evolution, 49: 418–426.

    Article  Google Scholar 

  • Hansen, M. T., 1978, Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans, J. Bact., 134: 71–75.

    PubMed  CAS  Google Scholar 

  • Hare, J. T., and Taylor, J. H., 1989, Methylation in eucaryotes influences the repair of G/T and A/C DNA basepair mismatches, Cell Biophys., 15: 29–40.

    PubMed  CAS  Google Scholar 

  • Harris, E. H., 1989 The Chlamydomonas Sourcebook: A Comprehensive Guide to Biology and Laboratory UseAcademic Press, San Diego.

    Google Scholar 

  • Harsojo, S., Kitayama, S., and Matsuyama, A., 1981, Genome multiplicity and radiation resistance in Micrococcus radiodurans, J. Biochem. (Tokoyo) 90: 877–880.

    CAS  Google Scholar 

  • Heller, R., and Maynard Smith, J., 1979, Does Muller’s ratchet work with selfing? Genet. Res., 32: 289–293.

    Article  Google Scholar 

  • Henaut, A., and Luzzati, M., 1972, Controle de l’aptitude a recombiner pendant la phase vegetative chez Saccharomyces cerevisiae, Mol. Gen. Genet., 116: 26–34.

    Google Scholar 

  • Herskowitz, I., 1988, Life cycle of the budding yeast Saccharomyces cerevisiae, Microbiol. Rev., 52: 536–553.

    Google Scholar 

  • Hickey, D., and Rose, M., 1988, The role of gene transfer in the evolution of eukaryotic sex, in: The Evolution of Sex ( R. E. Michod and B. R. Levin, eds.), pp. 161–175, Sinauer Associates, Sunderland.

    Google Scholar 

  • Hickey. D. A., 1982, Selfish DNA: A sexually-transmitted nuclear parasite, Genetics, 101: 519–531.

    Google Scholar 

  • Hickey, D. A., 1993, Molecular symbionts and the evolution of sex, J. Hered., 84:410–414. Hill, W. G., and Robertson, A., 1966, The effect of linkage on limits to artificial selection, Genet. Res. 8: 269–294.

    Google Scholar 

  • Hoelzer, M. A., and Michod, R. E., 1991, DNA repair and the evolution of transformation in Bacillus subtilis. III. Sex with damaged DNA, Genetics, 128: 215–223.

    Google Scholar 

  • Hofer, F., 1985, Transfer of lactose-fermenting ability in Lactobacillus lattis, N. Z. J. Dairy Sci. Tech., 20: 179–183.

    Google Scholar 

  • Holbeck, S. L., and Strathern, J. N., 1997, A role for REV3 in mutagenesis during double-strand break repart in Saccharomyces cerevisiae, Genetics, 147: 1017–1024.

    PubMed  CAS  Google Scholar 

  • Holbeck, S. L., and Strathern, J. N., 1999, EXOI of Saccharomyces cerevisiae functions in muta-genesis during double-strand break repair, Ann. N. Y. Acad. Sci., 18: 375–377.

    Google Scholar 

  • Holland, J., de la Torre, J. C., Clarke, D. K., and Duarte, E., 1991, Quantitation of relative fitness and great adaptibility of clonal populations of RNA viruses. J. Virology, 65: 2960–2967.

    PubMed  CAS  Google Scholar 

  • Holliday, R., 1964, A mechanism for gene conversion in fungi, Genet. Res., 5:282–304. Holliday, R., 1984, The biological significance of meiosis, in: Controlling Events in Meiosis ( G. D. Evans, ed.), Cambridge University Press, Cambridge.

    Google Scholar 

  • Holliday, R., 1987. X-chromosome reactivation, Nature, 327: 661–662.

    Article  PubMed  CAS  Google Scholar 

  • Holliday, R., 1988, A possible role for meiotic recombination in germline reprogramming and maintenance, in: The Evolution of Sex ( R. E. Michod and B. R. Levin, eds.), pp. 45–55, Sinauer Associates, Sunderland.

    Google Scholar 

  • Holliday, R., 1989a, A different kind of inheritance, Sci. Am., 260: 60–73.

    Article  PubMed  CAS  Google Scholar 

  • Holliday, R., 1989b, DNA methylation and epigenetic mechanisms, Cell Biophys., 15:15–20. Hopf, F. A., Michod, R. E., and Sanderson, M. J., 1988, The effect of the reproductive system on mutation load, Theor. Pop. Bio., 33: 243–265.

    Google Scholar 

  • Hopwood, D. A., and Wright, H. M., 1972, Transformation in Thermoactinomyces vulgaris, J. Gen. Microbiol., 71: 383–398.

    Google Scholar 

  • Hoy, C. A., Fuscoe, J. C., and Thompson, L. H., 1987, Recombination and ligation of transfected DNA in CHO mutant EM9, which had high levels of sister chromatid exchange, Mol. & Cell. Bio., 7: 2007–2011.

    CAS  Google Scholar 

  • Ito, M., Fukuoda, Y., and Murata, K., 1983, Transformation of intact yeast cells treated with alkali cations, J. Bact., 153: 163–168.

    PubMed  CAS  Google Scholar 

  • Jahner, D., Stuhlmann, H., Stewart, C. L., Harbers, K., Lohler, J., Simon, I., and Jaenisch, R., 1982, De novo methylation and expression of retroviral genomes during mouse embryo-genesis, Nature, 298: 623–628.

    Article  PubMed  CAS  Google Scholar 

  • Juni, E., 1974, Simple genetic transformation assay for rapid diagnosis of Moraxella osloensis, App. Microbiol., 27: 16–24.

    Google Scholar 

  • Juni, E., 1977, Genetic transformation assays for identification of strains of Moraxella urethralis, J. Clin. Microbial., 5: 227–235.

    Google Scholar 

  • Juni, E., and Heym, G. A., 1980, Transformation assay for identification of psychrotrophic Achromobacters, App. Environ. Microbiol., 40: 1106–1114.

    CAS  Google Scholar 

  • Juni, E., Heym, G. A., and Newcomb, R. D., 1988, Identification of Moraxella bovis by qualitative genetic transformation and nutritional assays, App. Environ. Microbiol., 54: 1304–1306.

    CAS  Google Scholar 

  • Juni, E., and Janik, A., 1969, Transformation of Acinetobacter calcoaceticus (Bacterium anitra-turn), J. Bact., 98: 281–288.

    PubMed  CAS  Google Scholar 

  • Kawano, S., Takano, H., Mori, K., and Kuroiwa, T., 1991, A mitochondrial plasmid that promotes mitochondrial fusion in Physarum polycephalum. Protoplasma, 160: 167–169.

    Article  Google Scholar 

  • Keightley, P. D., 1994, The distribution of mutation effects on viability in Drosophila melanogaster, Genetics 138: 1315–1322.

    PubMed  CAS  Google Scholar 

  • Keightley, P. D., 1998, Inference of genome-wide mutation rates and distribution of mutation effects for fitness traits: A simulation study, Genetics, 150: 1283–1293.

    PubMed  CAS  Google Scholar 

  • Keightley, P. D., and Bataillon, T. M., 2000, Multigeneration maximum-likelihood analysis applied to mutation-accumulation experiments in Caenorhabditis elegans, Genetics, 154: 1193–1201.

    PubMed  CAS  Google Scholar 

  • Keightley, P. D., and Caballero, A., 1997, Genomic mutation rates for lifetime reproductive output and lifespan in Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA, 94: 3823–3827.

    Article  PubMed  CAS  Google Scholar 

  • Keightley, P. D., and Eyre-Walker, A., 1999, Terumi Mukai and the riddle of deleterious mutation rates, Genetics 153: 515–523.

    PubMed  CAS  Google Scholar 

  • Keightley, P. D., and Eyre-Walker, A., 2000, Deleterious mutation and the evolution of sex, Science 290: 331–333.

    Article  PubMed  CAS  Google Scholar 

  • Keightley, P. D., and Eyre-Walker, A., 2001, Resonse to Kondrashov, Trends in Genetics, 17: 77–78.

    Article  PubMed  CAS  Google Scholar 

  • Kersulyte, D., Chalkauskas, H., and Berg, D. E., 1999, Emergence of recombinant strains of Helicobacter pylori during human infection, Mol. Microbiol. 31: 31–43.

    Article  PubMed  CAS  Google Scholar 

  • Kibota, T. T., and Lynch, M., 1996, Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature 381: 694–696.

    Article  CAS  Google Scholar 

  • Klar, A. J. S., and Bonaduce, M. J., 1993, The mechanism of fission yeast mating-type inter-conversioni: evidence for two types of epigenetically inherited chromosomal imprinting events, Cold Spring Harbor Symp. Quant. Bio., 58: 457–465.

    Article  CAS  Google Scholar 

  • Kondrashov, A. S., 1982, Selection against harmful mutations in large sexual and asexual populations, Genet. Res., 40: 325–332.

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov, A. S., 1988, Deleterious mutations and the evolution of sexual reproduction, Nature., 336: 435–440.

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov, A. S.,1993, Classification of hypotheses on the advantage of amphimixis,J. tiered., 84: 372–387.

    Google Scholar 

  • Kondrashov, A. S., 1994c, Muller’s ratchet under epistatic selection, Genetics, 136: 1469 1473.

    Google Scholar 

  • Kondrashov, A. S., 1998, Measuring spontaneous deleterious mutation process, Genetica, 102 /103: 183–197.

    Article  PubMed  Google Scholar 

  • Kondrashov, A. S., 2001, Sex and U, Trends in Genetics, 17: 75–77.

    Article  PubMed  CAS  Google Scholar 

  • Kowalski, S., and Laskowski, W., 1975, The effect of three rad genes on survival, inter-and intragenic mitotic recombination in Saccharomyces, Mol. & Gen. Genet., 136: 75–86.

    Article  CAS  Google Scholar 

  • Koyama, Y, Hoshino, T., Tomizuka, N., and Furukawa, K., 1986, Genetic transformation of the extreme thermophile Thermus thermophilus and of other Thermus spp, J Bact, 166: 338–340.

    PubMed  CAS  Google Scholar 

  • Kruger, D. H., Schroeder, C., Santibanez-Koref, M., and Reuter, M., 1989, Avoidance of DNA methylation: a virus-encoded methylase inhibitor and evidence for counterselection of methylation recognition sites in viral genomes, Cell Biophys., 15: 87–95.

    PubMed  CAS  Google Scholar 

  • Kunz, B. A., Barclay, B. J., Game, J. C., Little, J. G., and Haynes, R. H., 1980, Induction of mitotic recombination in yeast by starvation for thymine nucleotides, Proc. Natl. Acad. Sci. USA, 77: 6057–6061.

    Article  PubMed  CAS  Google Scholar 

  • Kunz, B. A., and Haynes, R. H., 1981a, DNA repair and mutagenesis in yeast, in: The Molecular Biology of the Yeast Saccharomyces ( J. Strathern, E. Jones, and J. Broach, eds.), pp. 371–414, Cold Spring Harbor Laboratory, Cold Spring Harbor.

    Google Scholar 

  • Kunz, B. A., and Haynes, R. H. 1981b, Phenomenology and genetic control of mitotic recombination in yeast. Ann. Rev. Genet., 15: 57–89.

    Article  PubMed  CAS  Google Scholar 

  • Lambert, J. D., and Moran, N. A., 1998, Deleterious mutations destabilize ribosomal RNA in endosymbiotic bacteria, Proc. Natl. Acad. Sci. USA, 95: 4458–4462.

    Article  PubMed  CAS  Google Scholar 

  • Lang, B. F., Burger, G., O’Kelly, C. J., Cedergren, R., Golding, G. B., Lemieux, C., Sankoff, D., Turmel, M., and Gray, M. W., 1997, An ancestral mitochondrial DNA resembling a eubacterial genome in miniature, Nature, 387: 493–497.

    Article  PubMed  CAS  Google Scholar 

  • Lemontt, J. F., 1980, Genetic and physiological factors affecting repair and mutagenesis in yeast, in: DNA repair and mutagenesis in eukaryotes ( F. J. de Serres, ed.), pp. 85–120, Plenum Press, New York.

    Chapter  Google Scholar 

  • Li, E., Beard, C., and Jaenisch, R., 1993, Role for DNA methylation in genomic imprinting, Nature, 366: 362–365.

    Article  PubMed  CAS  Google Scholar 

  • Linz, B., Schenker, M., Zhu, P., and Achtman, M., 2000, Frequent interspecific genetic exchange between commensal neisseriae and Neisseria meningitides, Mol. Microbiol., 36: 1049–1058.

    Article  PubMed  CAS  Google Scholar 

  • Lively, C., Craddock, C., and Vrijenhoek, R., 1990, Red queen hypothesis supported by parasitism in sexual and clonal fish, Nature, 344: 864–866.

    Article  Google Scholar 

  • Lorenz, M. G., Gerjets, D., and Wackernagel, W., 1991, Release of transforming plasmid and chromosomal DNA from two cultured soil bacteria, Arch. Microbial., 156: 319–326.

    Article  CAS  Google Scholar 

  • Lorenz, M. G., and Wackernagel, W., 1993, Transformation as a mechanism for bacterial gene transfer in soil and sediment—studies with a sand/clay microcosm and the cyanobacterium Synechocystis OL50, in: Trends In Microbial Ecology ( R. Guerrero and C. PedrosAlio, eds.), pp. 325–330, Spanish Society For Microbiology, Barcelona.

    Google Scholar 

  • Lorenz, M. G., and Wackernagel, W., 1994, Bacterial gene transfer by natural genetic transformation in the environment, Microbial. Rev., 58: 563–602.

    CAS  Google Scholar 

  • Lynch, M., and Blanchard, J. L., 1998, Deleterious mutation accumulation in organelle genomes, Genetica, 102 /103: 29–39.

    Article  PubMed  Google Scholar 

  • Lynch, M., Burger, R., Butcher, D., and Gabriel, W., 1993, The mutational meltdown in asexual populations, J. Hered., 84: 339–344.

    PubMed  CAS  Google Scholar 

  • Lynch, M., and Gabriel, W., 1990, Mutation load and the survival of small populations, Evolution, 44: 1725–1737.

    Article  Google Scholar 

  • Kibota, T., and Lynch, M., 1996, Estimate of the genomic mutation rate deleterious to overall fitness in E. coli, Nature, 381: 694–696.

    Article  PubMed  CAS  Google Scholar 

  • Magni, G. E., 1963, The origin of spontaneous mutations during meiosis, Proc. Natl. Acad. Sci. USA, 50: 975–980.

    Article  PubMed  CAS  Google Scholar 

  • Magni, G. E., and von Borstel, R. C., 1962, Different rates of spontaneous mutation during mitosis and meiosis in yeast, Genetics 47: 1097–1108.

    PubMed  CAS  Google Scholar 

  • Margulis, L., 1981, Symbiosis in Cell Evolution, W. H. Freeman and Company, San Francisco. Margulis, L., and Sagan, D., 1984, Evolutionary origins of sex, in: Oxford Surveys in Evolutionary Biology (R. Dawkins and M. Ridley, eds.), pp. 16–47, Oxford University Press, London.

    Google Scholar 

  • Margulis, L., and Sagan, D., 1985, Origins of Sex, Yale University Press, New Haven. Margulis, L., Sagan, D., and Olendzenski, L., 1985, What is sex? in: The Origin and Evolution of Sex (H. O. Halvorson and A. Monroy, eds.), pp. 69–85, Marine Biological Laboratory, Woods Hole, Alan R. Liss Inc., New York.

    Google Scholar 

  • Mathis, L. S., and Scocca, J. J., 1982, Haemophilus influenzae and Neisseria gonorrhoeae recognize different specificity determinants in the DNA uptake step of genetic transformation, J. Gen. Microbiol., 128: 1159–1161.

    CAS  Google Scholar 

  • Mattimore, V., and Battista, J. R.,1996, Radioresistance of Deinococcus ragiodurans: Functions necesary to survive ionizing radiation are also necessary to survive prolonged desiccation, J. Bact, 178: 633–637.

    Google Scholar 

  • Matzke, M., and Matzke, A. J. M., 1993, Genomic imprinting in plants: parental effects and trans-inactivation phenomena, Ann. Rev. Plant Phys. & Plant Mol. Bio., 44: 53–76.

    Article  CAS  Google Scholar 

  • Maynard Smith, J., 1968, Evolution in sexual and asexual populations, Am. Nat. 102:469–473. Maynard Smith, J., 1971, What use is sex? J. Theor. Biol., 30: 319–335.

    Article  Google Scholar 

  • Maynard Smith, J., 1978, The Evolution of Sex, Canbridge University Press, Cambridge. Maynard Smith, J., 1988, The evolution of recombination, in: The Evolution of Sex (R. E.

    Google Scholar 

  • Michod and B. R. Levin, eds.) pp. 106–125, Sinauer and Associates, Sunderland. Maynard Smith, J., and Smith, N. H., 1998, Detecting recombination from gene trees, Mol. Biol. Evo1.,15:590–599.

    Google Scholar 

  • McClain, M. E., and Spendlove, R. S., 1966, Multiplicity reactivation of reovirus particles after exposure to ultraviolet light, J. Bact., 92: 1422–1429.

    PubMed  CAS  Google Scholar 

  • McGill, C. B., Holbeck, S. L., and Strathern, J. N.,1998, The chromosomal bias of misincorporation during double-strand break repair is not altered in mismatch repair-defective strains of Saccharomyces cerevisiae, Genetics 148:1525–1533.

    Google Scholar 

  • McGrath, J., and Solter, D., 1984, Completion of mouse embryogenesis requires both the maternal and paternal genomes, Cell, 37: 179–183.

    Article  PubMed  CAS  Google Scholar 

  • Melzer, A. L., and Koeslag, J. H., 1991, Mutations do not accumulate in asexual isolates capable of growth and extinction-Muller’s ratchet re-examined, Evolution, 45: 649–655.

    Article  Google Scholar 

  • Mereschkovsky, C., 1905, Le plante consideree comme une complex symbiotique, Bulletin Societe Science Naturelle, Ouest, 6: 17–98.

    Google Scholar 

  • Metzenberg, R. L., and Glass, N. L., 1990, Mating type and mating strategies in Neurospora, BioEssays 12: 53–59.

    Article  CAS  Google Scholar 

  • Mevarech, M., and Werczberger, R., 1985, Genetic transfer in Halobacterium volcanii, J. Bact., 162: 461–462.

    CAS  Google Scholar 

  • Michod, R., 1993, Genetic error, sex, and diploidy, J. Hered., 84: 360–371.

    PubMed  CAS  Google Scholar 

  • Michod, R. E., 1990, Evolution of sex, Trends Ecol. Evol. 5: 30.

    Google Scholar 

  • Michod, R. E., and Gayley, T. W., 1992, Masking of mutations and the evolution of sex, Am. Nat., 139: 706–734.

    Article  Google Scholar 

  • Michod, R. E., and Levin, B. R., 1988, Introduction, in: The Evolution of Sex ( R. E. Michod and B. R. Levin, eds.), pp. 1–6, Sinauer Associates, Sunderland.

    Google Scholar 

  • Michod, R. E., and Long, A., 1995, Origin of sex for error repair. II. Rarity and extreme environments. Theor. Pop. Biol. 47: 56–81.

    Article  CAS  Google Scholar 

  • Michod, R. E., Wojciechowski, M. E, and Hoelzer, M. A., 1988, DNA repair and the evolution of transformation in the bacterium Bacillus subtilis, Genetics, 118: 31–39.

    CAS  Google Scholar 

  • Miller, S. L., and Orgel, L. E., 1974, The Origins of Life on the Earh (W. D. McElroy and C. P. Swanson, eds.), Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  • Mongold, J. A., 1992, DNA repair and the evolution of transformation in Haemophilus influenzae, Genetics 132: 893–898.

    CAS  Google Scholar 

  • Monk, M., 1986, Methylation and the X chromosome, BioEssays, 4: 204–208.

    Article  PubMed  CAS  Google Scholar 

  • Monk, M., 1987, Memories of mother and father, Nature, 328: 203–204.

    Article  PubMed  CAS  Google Scholar 

  • Moore, T., and Haig, D., 1991, Genomic imprinting in mammalian development: a parental tug-of-war, Trends Genet., 7: 45–49.

    PubMed  CAS  Google Scholar 

  • Moran, N. A., 1996, Accelerated evolution and Muller’s ratchet in endosymbiotic bacteria, Proc. Natl. Acad. Sci. USA, 96: 2873–2878.

    Article  Google Scholar 

  • Morgan, T. H., 1913, Heredity and Sex, Columbia University Press, New York.

    Google Scholar 

  • Moritz, C., McCallum, H., Donnellan, S., and Roberts, J. D., 1991, Parasite loads in parthenogenetic and sexual lizards (Heteronotia binoei): support for the Red Queen hypothesis, Proc. R. Soc. Lond., B, 244: 145–149.

    Article  Google Scholar 

  • Morrison, D. A., Mannarelli, B., and Vijayakumar, M. N., 1982, Competence for transformation in Streptococcus pneumoniae: an inducible high-capacity system for genetic exchange, in: Microbiology (D. Schlessinger, ed.), Am. Soc. Microbiol., Washington, D. C.

    Google Scholar 

  • Mukai, T., 1964, The genetic structure of natural populations of Drosophila melanogaster. I. Spontaneous mutation rate of polygenes controlling viability, Genetics, 50: 1–19.

    PubMed  CAS  Google Scholar 

  • Mukai, T., and Yamazaki, T., 1964, Position effect of spontaneous mutant polygenes controlling viability in Drosophila melanogaster, Proc. Japan Acad., 40: 840–845.

    Google Scholar 

  • Mukai, T., 1969, The genetic structure of natural populations of Drosophila melanogaster. VII Synergistic interaction of spontaneous mutant polygenes controlling viability, Genetics, 61: 749–761.

    PubMed  CAS  Google Scholar 

  • Mukai, T., Chigusa, S. T., Mettler, L. E., and Crow, J. E, 1972, Mutation rate and dominance of genes affecting viability in Drosophila melanogaster, Genetics, 72: 335–355.

    CAS  Google Scholar 

  • Muller, H. J.,1914, A gene for the fourth chromosome of Drosophila, J. Exp. Zoo., 17:325–336.

    Google Scholar 

  • Muller, H. J.,1918, Genetic variability, twin hybrids and constant hybrids, in a case of balanced lethal factors, Genetics, 3: 422–500.

    Google Scholar 

  • Muller, H. J., 1932, Some genetic aspects of sex, Am. Nat., 66: 118–138.

    Article  Google Scholar 

  • Muller, H. J., 1958, Evolution by mutation, Bull. Am. Math. Soc., 64: 137–160.

    Article  Google Scholar 

  • Muller, H. J., 1964, The relation of recombination to mutational advance, Mut. Res., 1: 2–9.

    Article  Google Scholar 

  • Nachman, M. W., and Crowell, S. L., 2000, Estimate of the mutation rate per nucleotide in humans, Genetics, 156: 297–304.

    PubMed  CAS  Google Scholar 

  • Nei, M., 1970, Accumulation of nonfunctional genes on sheltered chromosomes, Am. Nat., 104: 311–322.

    Article  Google Scholar 

  • Nevoigt, E., Fassbender, A., and Stahl, U., 2000, Cells of the yeast Saccharomyces cerevisiae are transformable by DNA under non-artificial conditions, Yeast 16: 1107–1110.

    Article  PubMed  CAS  Google Scholar 

  • Niwa, O., and Sugahara, T., 1981, 5-Azacytidine induction of mouse endogenous type C virus and suppression of DNA methylation, Proc. Natl. Acad. Sci. USA, 78: 6290–6294.

    Google Scholar 

  • Norgard, M. V., and Imaeda, T., 1978, Physiological factors involved in the transformation of Mycobacterium smegmatis, J. Bact., 133: 1254–1262.

    CAS  Google Scholar 

  • Nur, I., Pascale, E., and Furano, A. V., 1989, Demethylation and specific remethylation of the promoter-like reion of the L family of mammalian transposable elements, Cell Biophys., 15: 61–66.

    PubMed  CAS  Google Scholar 

  • O’Conner, M., Wopat, A., and Hanson, R. S., 1977, Genetic transformation in Methylobacterium organophilum, J. Gen. Microbiol., 98: 265–272.

    Google Scholar 

  • Ohnishi, 0., 1977, Spontaneous and ethyl methanesulfonate-induced mutations controlling viability in Drosophila melanogaster. II. Homozygous effect of polygenetic mutations, Genetics, 87: 529–545.

    Google Scholar 

  • Okimoto, R., Macfarlane, J. L., Clary, D. O., and Wolstenholme, D. R., 1992, The mitochondrial genomes of two nematodes, Caenorhanditis eloegans and Ascaris suum, Genetics, 130: 471–498.

    CAS  Google Scholar 

  • Ormerod, J. G., 1988, Natural genetic transformation in Chlorobium, in: Green Photosynthetic Bacteria ( J. M. Olson, J. Ormerod, J. Amesz, E. Stackebrand T, and H. G. Truper, eds.), pp. 315–319, Plenum Press, New York.

    Chapter  Google Scholar 

  • Otto, S. P, and Feldman, M. W., 1997, Deleterious mutations, variable epistatic interactions, and the evolution of recombination, Theor. Pop. Bio., 51: 134–147.

    Article  CAS  Google Scholar 

  • Ottolenghi, E., and Hotchkiss, R. D., 1960, Appearance of genetic transforming activity in pneumococcal cultures. Science, 132: 1257–1258.

    PubMed  CAS  Google Scholar 

  • Page, W. J., 1981, Optimal conditions for induction of competence in nitrogen-fixing Azotobacter vinelanii, Can. J. Microbiol., 28: 389–397.

    Google Scholar 

  • Pakula, R., and Walczak, W., 1963, On the nature of competence of transformable Streptococci, J. Gen. Microbiol., 31. 125–133.

    PubMed  CAS  Google Scholar 

  • Pickett-Heaps, J. D., 1971, The autonomy of the centriole: fact or fallacy? Cytobios, 3: 205–214.

    Google Scholar 

  • Pifer, M. L., and Smith, H. O., 1985, Processing of donor DNA during Haemophilus influenzae transformation: analysis using a model plasmid system, Proc. Natl. Acad. Sci. USA, 82: 3731–3735.

    Article  PubMed  CAS  Google Scholar 

  • Redfield, R. J., 1988, Evolution of bacterial transformation: Is sex with dead cells ever better than no sex at all? Genetics, 119: 213–221.

    PubMed  CAS  Google Scholar 

  • Redfield, R. J., 1993a, Evolution of transformation: testing the DNA repair hypothesis in Bacillus subtilis and Haemophilus influenzae, Genetics, 133: 755–761.

    CAS  Google Scholar 

  • Redfield, R. J., 1993b, Genes for breakfast: the have-your-cake-and -eat-it-too of bacterial transformation, J. Hered., 84: 400–404.

    PubMed  CAS  Google Scholar 

  • Redfield, R. J., Schrag, M. R., and Dean, A. M., 1997, The evolution of bacterial transformation: Sex with bad relations, Genetics, 146: 27–38.

    PubMed  CAS  Google Scholar 

  • Reik, W., Collick, A., Norris, M. L., Barton, S. C., and Surani, M. A., 1987, Genomic imprinting determines methylation of parental alleles in transgenic mice, Nature, 328: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Resnick, M. A., 1976, The repair of double-strand breaks in DNA: A model involving recombination, J. Theor. Bio., 59: 97–106.

    Article  CAS  Google Scholar 

  • Reynolds, R., 1987, Induction and repair of closely opposed pyrimidine dimers in Saccharomyces cerevisiae, Mut. Res., 184: 197–207.

    Article  CAS  Google Scholar 

  • Riggs, A. D., 1989, DNA methylation and cell memory, Cell Biophys., 15: 1–13.

    PubMed  CAS  Google Scholar 

  • Rodarte-Ramon, U. S., 1972, Radiation induced recombination in Saccharomyces: the genetic control of recombination in mitosis and meiosis, Rad. Res., 49: 148–154.

    Article  CAS  Google Scholar 

  • Rodarte-Ramone, U. S., and Mortimer, R. K., 1972, Radiation induced recombination in Saccharomyces: isolation and genetic study of recombination deficient mutants, Rad. Res., 49: 133–147.

    Article  Google Scholar 

  • Roelants, P., Konvalinkova, V., Mergeay, M., and Lurquin, P. E, 1976, DNA uptake by Streptomyces species, Biochim. Biophys. Acta, 442: 117–122.

    Article  PubMed  CAS  Google Scholar 

  • Rosche, W. A., and Foster, P. L., 2000, Determining mutation rates in bacterial populations, Methods 20: 4–17.

    Article  PubMed  CAS  Google Scholar 

  • Rose, M. R., 1983, The contagion mechanism for the origin of sex, J. Theor. Bio., 101: 137–146.

    Article  CAS  Google Scholar 

  • Rowlands, R. T., and Turner, G., 1974, Recombination between the extranuclear genes conferring oligomycin resistance and cold sensitivity in Aspergillus nidulans, Mol. Gen. Genet., 133: 151–161.

    CAS  Google Scholar 

  • Rudin, I., Sjostrom, J. E., Lindberg, M., and Philipson, L., 1974, Factors affecting competence for transformation in Staphylococcus aureus, J. Bact., 118: 155–164.

    CAS  Google Scholar 

  • Russell, P. J., 1998, Genetics, Benjamin/Cummings, Menlo Park.

    Google Scholar 

  • Sagan, C., 1973, Ultraviolet selection pressures on the earliest organisms, J. Theor. Bio., 39: 195–200.

    Article  CAS  Google Scholar 

  • Sager, R., and Granick, S., 1954, Nutritional control of sexuality in Chlamydomonas reinhardi, J. Gen. Physiol. 37: 729–742.

    Article  CAS  Google Scholar 

  • Schultz, S. T., Lynch, M., and Willis, J. H., 1999, Spontaneous deleterious mutation in Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA, 96: 393–11398.

    Google Scholar 

  • Seger, J., and Hamilton, W. D., 1988, Parasites and sex, in: The Evolution of Sex ( R. E. Michod and B. R. Levin, eds.), pp. 176–193, Sinauer and Associates, Sunderland.

    Google Scholar 

  • Selk, E., and Wills, C., 1997, Mismatch repair and the accumulation of deleterious mutations influence the competitive advantage of MAT (mating type) heterozygosity in the yeast Saccharomyces cerevisiae, Genet. Res. 71: 1–10.

    Article  Google Scholar 

  • Shabalina, S. A., Yampolsky, L. Y., and Kondrashov, A. S., 1997, Rapid decline of fitness in panmictic populations of Drosophila melanogaster maintained under relaxed natural selection, Proc. Natl. Acad. Sci. USA, 94: 13034–13039.

    Article  PubMed  CAS  Google Scholar 

  • Shah, G. R., and Caufield, P. W., 1993, Enhanced transformation of Streptococcus mutans by modifications in culture conditions, Anal. Biochem., 214: 343–346.

    Google Scholar 

  • Shaw, R. G., Byers, D. L., and Darmo, E., 2000, Spontaneous mutational effects on reproductive traits of Arabidopsis thaliana, Genetics, 155: 369–378.

    CAS  Google Scholar 

  • Shestakov, S. V., and Khyen, N. T., 1970, Evidence for’genetic transformation in blue-green alga Anacystis nidulans, Mol. Gen. Genet., 107: 372–375.

    Google Scholar 

  • Simmons, M. J.. and Crow, J. F., 1977, Mutations affecting fitness in Drosophila populations, Ann. Re. Genet.,11: 49–78.

    Google Scholar 

  • Sinha, R. E, and Iyer, V. N., 1971, Competence for genetic transformation and the release of DNA from Bacillus subtilis, Biochim. Biophys. Acta, 232: 61–71.

    Google Scholar 

  • Sisco, K. L., and Smith, H. 0., 1979, Sequence-specific DNA uptake in Haemophilus transformation, Proc. Natl. Acad. Sci. USA, 76: 972–976.

    Google Scholar 

  • Smith, H. O., Gwinn, M. L., and Salzberg, S. L., 1999, DNA uptake signal sequences in naturally transformable bacteria, Res. Microbio1., 150: 603–616.

    Article  CAS  Google Scholar 

  • Sniegowski, P. D., Gerrish, P. J., Johnson, T., and Shaver, A., 2000, The evolution of mutation rates: separating causes from consequences, BioEssays, 22: 1057–1066.

    Article  PubMed  CAS  Google Scholar 

  • Sniegowski, P. D., Gerrish, P. J., and Lenski, R. E., 1997, Evolution of high mutation rates in experimental populations of E. coli, Nature, 387: 703–705.

    Article  CAS  Google Scholar 

  • Snustad, D. E, Simmons, M. J., and Jenkins, J. B., 1997, Principles of Genetics, John Wiley & Sons, New York.

    Google Scholar 

  • Sparling, P. F., 1966, Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance, J Bact., 92: 1364–1371.

    PubMed  CAS  Google Scholar 

  • Stearns, S. C., 1987, The Evolution of Sex and its Consequences, Sinauer Associates, Sunderland.

    Google Scholar 

  • Stevens, S. E., and Porter, R. D., 1986, Heterospecific transformation among cyanobacteria, J. Bact., 167: 1074–1–76.

    Google Scholar 

  • Stewart, G., and Carlson, C. A., 1986, The biology of natural transformation, Ann. Rev. Microbiol., 40: 211–235.

    Google Scholar 

  • Strathern, J. N., Shafer, B. K., and McGill, C. B., 1995, DNA synthesis errors associated with double-strand-break repair, Genetics, 140: 965–972.

    PubMed  CAS  Google Scholar 

  • Streips, U. N., and Young, E E., 1971, Mode of action of the competence-inducing factor of Bacillus stearothermophilus, J. Bact., 106: 868–875.

    PubMed  CAS  Google Scholar 

  • Strobeck, C., Maynard Smith, J., and Charlesworth, B., 1976, The effects of hitchhiking on a gene for recombination, Genetics, 82: 547–558.

    PubMed  CAS  Google Scholar 

  • Stroun, M., Anker, E, and Auderset, G., 1970, Natural release of nucleic acids from bacteria into plant cells, Nature, 227: 607–608.

    Article  PubMed  CAS  Google Scholar 

  • Stryer, L., 1988, Biochemistry ( 3rd ed. ), W. H. Freeman, New York.

    Google Scholar 

  • Sturtevant, A. H., and Mather, K., 1938, The interrelations of inversions, heterosis, and recombination, Am. Nat., 72: 447–452.

    Article  Google Scholar 

  • Suerbaum, S., and Achtman, M., 1999, Evolution of Helicobacter pylori: the role of recombination, Trends in Microbiology, 7: 182.

    Article  PubMed  CAS  Google Scholar 

  • Suerbaum, S., Maynard Smith, J., Bapumia, K., Morelli, G., Smith, N. H., Kunstmann, E., Dyrek, I., and Achtman, M., 1998, Free recombination within Helicobacter pylori, Proc. Natl. Acad. Sci., USA, 95: 12619–12624.

    Article  CAS  Google Scholar 

  • Sun, H., Treco, D., Schultes, N. P., and Szostak, J. W., 1989, Double-stranded breaks at an initiation site for meiotic gene conversion, Nature, 338: 87–90.

    Article  PubMed  CAS  Google Scholar 

  • Surani, M. A., Reik, W., and Allen, N. D., 1988, Transgenes as molecular probes for genomic imprinting, Trends Genet., 4: 59–62.

    Article  PubMed  CAS  Google Scholar 

  • Surani, M. A. H., Barton, S. C., and Norris, M. L., 1984, Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis, Nature, 308: 548-550.

    Google Scholar 

  • Surani, M. A. H., Barton, S. C., and Norris, M. L., 1987, Influence of parental chromosomes on spatial specificity in androgenetic-s parthenogenetic chimeras in the mouse, Nature, 326: 395–397.

    Article  PubMed  CAS  Google Scholar 

  • Swain, J. L., Stewart, T. A., and Leder, P, 1987, Parental legacy determines methylation and expression of an autosomal transgene: A molecular mechanism for parental inprinting, Cell, 50: 719–727.

    Article  PubMed  CAS  Google Scholar 

  • Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J., and Stahl, E. W., 1983, The double-strand break repair model for recombination, Cell, 33: 25–35.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, I., and Gibbons, N. E., 1957, Effect of salt concentration on the extracellular nucleic acids of Micrococcus halodenitrificans, Can. J. Microhiol., 3: 687–694.

    Article  CAS  Google Scholar 

  • Thacker, J., 1989, The use of integrating DNA vectors to analyse the molecular defects in ionising radiation-sensitive mutants of mammalian cells including ataxia telangiectasia, Mut. Res., 220: 187–204.

    Article  CAS  Google Scholar 

  • Thompson, L. H., Brookman, K. W., Dillehay, L. E., Carrano, A. V., Mazrimas, J. A., Mooney, C. L., and Minkler, J. L., 1982, A CHO-cell strain having hypersensitivity to mutagens, a defect in DNA strand -break repair, and an extraordinary baseline frequency of sister-chromatid exchange, Mut. Res. 95: 427–440.

    Article  CAS  Google Scholar 

  • Tilman, D., Wedin, D., and Knops, J., 1996, Productivity and sustainability influenced by bio-diversity in grassland ecosystems, Nature, 379: 7113–720.

    Article  Google Scholar 

  • Tirgari, S., and Moseley, B. E. B., 1980, Transformation in Micrococcus radiodurans: measurement of various parameters and evidence for multiple, independently segregating genomes per cell, J. Gen. Microbial., 119: 287–296.

    Google Scholar 

  • Tomasz, A., 1965, Control of the competent state in Pneumococcus by a hormone-like cell product: an example for a new type of regulatory mechanism in bacteria, Nature, 208: 155–159.

    Article  PubMed  CAS  Google Scholar 

  • Tomasz, A., 1966, Model for the mechanism controlling the expression of competent state in Pneumococcus cultures, J. Bact., 91: 1050–1061.

    PubMed  CAS  Google Scholar 

  • Tomasz, A., and Hotchkiss, R. D., 1964, Regulation of the transformability of Pneumococcal cultures by macromolecular cell products, Proc. Natl. Acad. Sci. LISA, 51: 480–487.

    Article  CAS  Google Scholar 

  • Trehan, K., and Sinha, U., 1981, Genetic transfer in a nitrogen-fixing filamentous cyanobac- terium, J. Gen. Microbiol. 124: 349–352.

    Google Scholar 

  • Tremblay, K. D., Saam, J. R., Ingram, R. S., Tilghman, S. M., and Bartolomei, M. S., 1995, A paternal-specific methylation imprint marks the alleles of the mouse H19 gene, Nat. Genet., 9: 407–413.

    Article  PubMed  CAS  Google Scholar 

  • Van Nieuwenhoven, W. H., Hellingwerf, K. J., Venema, G., and Konings, W. N., 1982, Role of proton motive force in genetic transformation of Bacillus subtilis, J. Bact., 151: 771–776.

    Google Scholar 

  • Van Valen, L., 1973, A new evolutionary law, Evol. Theory, 1: 1–30.

    Google Scholar 

  • Vassilieva, L. L., and Lynch, M., 1999, The rate of spontaneous mutation for life-history traits in Caenorhabditis elegans, Genetics, 151: 119–129.

    CAS  Google Scholar 

  • Venema, G., 1979, Bacterial transformation, Adv. Microb. Phys., 19: 245–331.

    Article  CAS  Google Scholar 

  • Wagner, G. P, and Gabriel, W., 1990, Quantitative variation in finite parthenogenetic populations: What stops Muller’s ratchet in the absence of recombination? Evolution, 44: 715–731.

    Article  Google Scholar 

  • Wake, C. T., Vernaleone, F., and Wilson, J. H., 1985, Topological requirements for homologous recombination among DNA molecules transfected into mammalian cells, Mol. & Cell. Biol., 5: 2080–2089.

    CAS  Google Scholar 

  • Walker, I., 1978, The evolution of sexual reproduction as a repair mechanism. Part 1. A model for self-repair and its biological implications, Acta Bio., 27: 133–158.

    Google Scholar 

  • Wang, Y., and Taylor, D. E., 1990, Natural transformation in Campylohacter species, J. Bact., 172: 949–955.

    PubMed  CAS  Google Scholar 

  • Watson, J. D., Hopkins, N. H., Roberts, J. W., Steitz, J. A., and Weiner, A. M., 1987, Molecular Biology of the Gene ( 4th ed. ), Benjamin Cummings, Menlo Park.

    Google Scholar 

  • Weismann, A., 1889, Essays upon Heredity and Kindred Biological Problems (E. B. Poulton, S. Schonland, and A. E. Shipley Trans. ). Clarendon Press, Oxford.

    Google Scholar 

  • West, S. A., Peters, A. D., and Barton, N. H., 1998, Testing for epistasis between deleterious mutations, Genetics, 149: 435–444.

    PubMed  CAS  Google Scholar 

  • Whitehouse, H. L. K., 1982, Genetic Recombination: Understanding The Mechanisms. Wiley, New York.

    Google Scholar 

  • Williams, G. C., 1975, Sex and Evolution, Princeton University Press, Princeton.

    Google Scholar 

  • Williams, G. C., and Mitton, J. B., 1973, Why reproduce sexually? J. Theor. Biol., 39: 545–554.

    Article  PubMed  CAS  Google Scholar 

  • Willis, J. H.. 1993, Effects of different levels of inbreeding on fitness components in Mimulus guttatus, Evolution, 47: 864–876.

    Article  Google Scholar 

  • Wilson, V. L., and Jones, P. A., 1983, DNA methylation decreases in aging but not in immortal cells, Science, 220: 1055–1057.

    Article  PubMed  CAS  Google Scholar 

  • Wojciechowski, M. R, Hoelzer, M. A., and Michod, R. E., 1989, DNA repair and the evolution of transformation in Bacillus subtilis. II. Role of inducible repair, Genetics, 121: 411–422.

    PubMed  CAS  Google Scholar 

  • Worrell, V. E., Nagle, D. P, McCarthy, D., and Eisenbraun, A., 1988, Genetic transformation system in the archaebacterium Methanobacterium thermoautotrophicum Marburg, J. Bact., 170: 653–656.

    PubMed  CAS  Google Scholar 

  • Wright, S., 1932, The roles of mutation, inbreeding, crossbreeding, and selection in evolution, Proc. XI International Congr. Genet., 1: 356–366.

    Google Scholar 

  • Wright, S., 1988, Surfaces of selective value revisited, Am. Nat., 131: 115–123.

    Article  Google Scholar 

  • Yankofsky, S. A., Gurevich, R., Grimland, N., and Stark, A. A., 1983, Genetic transformation of obligately chemolithotrophic thiobacilli, J. Bact., 153: 652–657.

    PubMed  CAS  Google Scholar 

  • Zuccotti, M., and Monk, M., 1995, Methylation of the mouse Xist gene in sperm and eggs correlates with imprinted Xist expression and paternal X-inactivation, Nat. Genet., 9: 316–320.

    Google Scholar 

  • Zeyl, C., Bell, G., and Green, D. M., 1996, Sex and the spread of retrotransposon Ty3 in experimental populations of Saccharomyces cerevisiae, Genetics 143: 1567–1577.

    PubMed  CAS  Google Scholar 

  • Zeyl, C., and DeVisser, J. A. G. M., 2000, Estimates of the rate and distribution of fitness effects of spontaneous mutation in Saccharomyces cerevisiae, Manuscript Submitted to Genetics.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Birdsell, J.A., Wills, C. (2003). The Evolutionary Origin and Maintenance of Sexual Recombination: A Review of Contemporary Models. In: Macintyre, R.J., Clegg, M.T. (eds) Evolutionary Biology. Evolutionary Biology, vol 33. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5190-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5190-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3385-0

  • Online ISBN: 978-1-4757-5190-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics