Skip to main content

Molecular and Morphological Correlates Following Neuronal Deafferentation: A Cortico-Striatal Model

  • Chapter
Plasticity and Regeneration of the Nervous System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 296))

Abstract

The ability of neurons to remodel the extent and configuration of their axons and dendrites plays an important role in maintaining function in the central nervous system in normal aging (Cotman and Anderson, 1983; Coleman and Flood, 1987). Conversely, the lack of an appropriate compensatory response of surviving cells to phenomena in the aged brain such as spontaneous neuron loss, deafferentation, or neurotransmitter deficits, is hypothesized to represent a common pathophysiological process in age-related neurodegenerative disorders (Coleman and Flood, 1986). Although the mechanisms governing synaptic remodelling in the adult brain are unknown, we hypothesize that it involves altered genomic expression in surviving neurons of afferent projection systems, whose terminals are induced to sprout and reinnervate deafferentated tissue (Cotman and Nieto-Sampedro, 1984). Moreover, since astrocytes participate in the process of removing degenerating axons and dendrites following a deafferentation lesion (Gage et al., 1988), alterations in the genomic response of these cells could be a critical factor leading to incomplete or delayed reorganization of new synaptic circuits (Scheff et al., 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Buttyan R., Olsson C.A., Pintar J., Chang C., Bandyk M., NG P.Y., and Sawczuk I.S., 1989, Induction of the TRPM-2 gene in cells undergoing programmed cell death. Mol. and Cell. Biol., 9:3473.

    CAS  Google Scholar 

  • Capetanaki Y.G., Ngai J., and Lazarides E., 1984, Regulation of the expression of genes coding for the intermediate filament subunits vimentin, desmin, and glial fibrillary acidic protein, in: “Molecular Biology of the Cytoskeleton,” Cold Spring Harbor Press.

    Google Scholar 

  • Chang H.T., Wilson C.J., and Kitai S.T., 1981, Single neostriatal efferent axons in the globus pallidus: a light and electron microscopy study, Science, 213:915.

    Article  PubMed  CAS  Google Scholar 

  • Cheng H.W., Anavi Y., Goshgarian H., McNeill T.H., and Rafols J.A., 1988, Loss and recovery of striatal dendritic spines following lesions in the cerebral cortex of adult and aged mice, Soc. Neurosci. Abst., 14:1219.

    Google Scholar 

  • Coleman P.D., and Flood D.G., 1986, Dendritic proliferation in the aging brain as a compensatory repair mechanisms, Prog. Brain Res., 70:227.

    Article  PubMed  CAS  Google Scholar 

  • Coleman P.D., and Flood D.G., 1987, Neurons numbers and dendritic extent in normal aging and Alzheimer disease, Neurobiol. Aging, 8:521.

    Article  PubMed  CAS  Google Scholar 

  • Collard M.W., and Griswald M.D., 1987, Biosynthesis and molecular cloning of sulfated glycoprotein 2 secretedby rat Sertoli cells, Biochem., 26:3297.

    Article  CAS  Google Scholar 

  • Cotman C.W., and Nieto-Sampedro M., 1984, Cell biology of Synaptic plasticity. Science. 225:1287.

    Article  PubMed  CAS  Google Scholar 

  • Cotman C.W., and Anderson K.J., 1983, Synaptic plasticity and functional stabilization in the hippocampal formation: possible role in Alzheimer disease, in: “Advances in Neurology,” S.G. Waxman, ed., Vol. 47 Functional recovery in Neurological Disease, Raven Press, New York, NY.

    Google Scholar 

  • Duguid J.R., Bohmont C.W., Liu N., and Tourtellotte W., 1989, Changes in brain gene expression shared by scrapie and Alzheimer disease, Proc. Natl. Acad. Sci (USA). 86:7260.

    Article  CAS  Google Scholar 

  • Freund T.F., Powell J.F., and Smith A.D., 1984, Tyrosine hydroxylase immunoreactivity boutons in synaptic contact with identified striatonigral neurons with particular reference to dendritic spines, Neuroscience. 13:1189.

    Article  PubMed  CAS  Google Scholar 

  • Gage F.H., Olejniczak P., and Armstrong D., 1988, Astrocytes are important for sprouting in the septohippocampal circuit, Exp. Neurol., 102:2.

    Article  PubMed  CAS  Google Scholar 

  • Geddes S.W., Wong J., Choi B.H., Kim R. C., Cotman C.W., and Miller F.D., 1990, Increased expression of embrionyc growth associated mRNA in Alzheimer disease, Neurosci. Lett., (in press).

    Google Scholar 

  • Isacson O., Fisher W., Wictorin K., Dawbarn D., and Bjorklund A., 1987, Astroglial response in the excitotoxically lesioned neostriatum and its projections areas in the rat, Neuroscience. 20:1043.

    Article  PubMed  CAS  Google Scholar 

  • Kalil K., and Skene J.H.P., 1986, Elevated synthesis of an axonally transported protein correlates with axon outgrowth in normal and injured pyramidal tracts, J. Neurosci., 6:2563.

    PubMed  CAS  Google Scholar 

  • Kosik K.S., D’Orecchio Lisa., Bruns G.A., Benowitz L.I., MacDonald P., Cox D.R., and Neve R., 1988, Human GAP-43: its deduced aminoacid sequence and chromosomal localization in mouse and human, Neuron. 1:127.

    Article  PubMed  CAS  Google Scholar 

  • Jenne D.E., and Tschopp J., 1989, Molecular structure and functional characterization of a human complement cytolysis inhibitor found in blood and seminal plasma: identity to sulfated glycoprotein 2., a constituent of rat testis fluid, Proc. Natl. Acad. Sci. (USA). 86:7123.

    Article  CAS  Google Scholar 

  • Lozano A.M., Doster S.K., Aguayo A.J., and Willard M.B., 1987, Immunoreactivity to GAP-43 in axotomized and regenerating retinal ganglion cells of adult rats, Abstr. Soc. Neurosci., 13:1389.

    Google Scholar 

  • May P.C., Lampert-Etchelles M., Johnson S.A., Poirier J., Master J., and Finch C.E., 1990, Dynamics of gene expression for hippocampal glycoprotein elevated in alzheimer’s disease and in response to experimental lesion in rat, Neuron, (in press).

    Google Scholar 

  • McNeill T.H., Brown S.A., Rafols J.A., and Shoulsson I., 1989, Atrophy of medium spiny I striatal dendrites in advanced Parkinson’s disease, Brain Res., 455:158.

    Google Scholar 

  • McNeill T.H. and Koeck L.L., 1990, Differential effects of advancing age on neurotransmitter, cell loss in the substantia nigra and striatum of the C57BL/6N mouse, Brain Res., (in press).

    Google Scholar 

  • Needles D.L., Nieto-Sampedro M., and Cotman C.W., 1986, Induction of a neurite factor in rat brain following injury or deafferentation, Neuroscience. 18:517.

    Article  Google Scholar 

  • Nichols N.R., Osterburg H.H., Masters J.N., Millar S.L., and Finch S.L., 1990, Messenger RNA for glial fibrillary acidic protein is decreased in rat brain following acute and chronic corticosterone, Mol. Brain Res., 7:1.

    Article  PubMed  CAS  Google Scholar 

  • Pasinetti G.M., Lerner S.P., Johnson S.A., Morgan D.G., Telford N.A., and Finch C.E.F., 1989, Chronic lesions differentially decrease tyrosine hydroxylase messenger RNA in dopaminergic neurons of substantia nigra, Mol. Brain Res., 5:203.

    Article  PubMed  CAS  Google Scholar 

  • Poirier J., May P.C., Osterburg H.H., Geddes J., Cotman C., and Finch C.E., 1990, Selective alterations of RNA in rat hippocampus after enthorhinal cortex lesioning, Proc. Natl. Acad. Sci. (USA). 87:303.

    Article  CAS  Google Scholar 

  • Reh T.A., Redshaw J.D., and Bisby M.A., 1987, Axons of the pyramidal tract do not increase their transport of growth-associated proteins after axotomy, Mol. Brain Res., 2:1.

    Article  Google Scholar 

  • Scheff W.S., and Dkosky S.T., 1989, Glucocorticoid suppression of lesion-induced synaptogenesis: effect of temporal manipulation of steroid treatment, Exp. Neurol., 105:260.

    Article  PubMed  CAS  Google Scholar 

  • Skene, J.H.P., 1989. Axonal growth-associated proteins, Ann. Rev. Neurosci., 12:127.

    Article  PubMed  CAS  Google Scholar 

  • Steward O., Torre E.R., Philips L.L., and Trimmer P.A., 1990, The process of reinnervation in the dente gyrus of adult rats: time course of increases in mRNA for glial fibrillary acidic protein, J. Neurosci., 10:2373.

    PubMed  CAS  Google Scholar 

  • Tsuruta J., Wong K., Fritz B., and Griswold B., 1990, Structural analysis of sulphated glycoprotein 2 from aminoacid sequence, Relationship to clusterin and serum protein 40, 40. Biochem. J., 268:571.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Pasinetti, G.M., Cheng, H.W., Reinhard, J.F., Finch, C.E., McNeill, T.H. (1991). Molecular and Morphological Correlates Following Neuronal Deafferentation: A Cortico-Striatal Model. In: Timiras, P.S., Privat, A., Giacobini, E., Lauder, J., Vernadakis, A. (eds) Plasticity and Regeneration of the Nervous System. Advances in Experimental Medicine and Biology, vol 296. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8047-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8047-4_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8049-8

  • Online ISBN: 978-1-4684-8047-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics