Skip to main content

A Possible Second Messenger System for the Production of Long-Term Changes in Synapses

  • Chapter
Molecular Mechanisms of Neuronal Responsiveness

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 221))

  • 89 Accesses

Abstract

Interactions between neurons that leave physiological traces lasting more than a few milleseconds are typically explained by reference to a second messenger system. Candidates for second messengers in brain typically involve enzymes, most often protein kinases, and use activation sequences that vary considerably in complexity; for example, calcium/calmodulin activated kinases require only the presence of sufficient concentrations of calcium against an appropriate background while stimulation of the c-AMP dependent kinase is pictured as a series of steps that include protein translocation, activation of a cyclase, and so forth (Greengard, 1981). Recently a probable second messenger system of considerable complexity and involving a novel type of kinase has been identified (Berridge and Irvine, 1984). Activation of several types of transmitter and hormone receptors stimulates the turnover of membrane phosphatidylinositol (PI) with the formation of two breakdown products in the interior of the cell, one of which releases calcium from intracellular stores and a second that, together with calcium, causes the translocation and activation of protein kinase C. This system can be modulated at several stages, as indicated by the observation that certain membrane receptor classes suppress the activation by other receptors of PI turnover (Baudry et al., 1986). In this chapter we will review the hypothesis that a novel kind of second messenger system is found in brain that, when activated, causes irreversible changes in the fundamental structures and functions of the neuronal cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akers, R. F., Lovinger, D. M., Colley, P. A., Linden, D. J. and Routtenberg, A., Translocation of protein kinase C activity may mediate hippocampal long-term potentiation, Science 231:587–589 (1986).

    Article  CAS  Google Scholar 

  • Alkon, D., Calcium-mediated reduction of ionic currents: a biophysical memory trace, Science 226:1037–1045 (1984).

    Article  CAS  Google Scholar 

  • Andersen, P., Silfvenius, H., Sundberg, S. H. and Sveen, O., A comparison of distal and proximal dendritic synapses on CA1 pyramids in guinea-pig hippocampal slices in vitro, J. Physiol. 307:273–299 (1980).

    CAS  Google Scholar 

  • Baines, A. J. and Bennett, V., Synapsin I is a spectrin-binding protein immunologically related to erythrocyte protein 4.1. Nature 315:410–413 (1985).

    Article  CAS  Google Scholar 

  • Baldassare, J. J., Bakshian, S., Knipp, M. A. and Fisher, G. J., Inhibition of fibrinogen receptor expression and serotonin release by leupeptin and antipain, J. Biol. Chem. 260:10531–10535 (1985).

    CAS  Google Scholar 

  • Baudry, M. and Lynch, G., Regulation of glutamate receptors by cations, Nature 282:748–750 (1979).

    Article  CAS  Google Scholar 

  • Baudry, M. and Lynch, G., Regulation of hippocampal glutamate receptors: evidence for the ivolvement of a calcium-activated protease, Proc. Nat. Acad. Sci. USA 77:2298–2302 (1980).

    Article  CAS  Google Scholar 

  • Baudry, M., Bundman, M., Smith, E. and Lynch, G., Micromolar calcium stimulates proteolysis and glutamate binding in rat brain synaptic membranes, Science 212:937–938 (1981a).

    Article  CAS  Google Scholar 

  • Baudry, M., Evans, J. and Lynch, G., Excitatory amino acids inhibit stimulation of phosphatidylinositol metabolism by aminergic agonists in hippocampus, Nature 319:329–331 (1986).

    Article  CAS  Google Scholar 

  • Baudry, M., Gall, C., Kessler, M., Alapour, H. and Lynch, G., Denervation-induced decrease in mitochondrial calcium transport in rat hippocampus, J. Neurosci. 3:252–259 (1983).

    CAS  Google Scholar 

  • Baudry, M., Lynch, G. and Gall, C., Induction of ornithine decarboxylase as a possible mediator of seizure-elicited changes in genomic expression in rat hippocampus, J. Neurosci. (in press) (1986).

    Google Scholar 

  • Baudry, M., Simonson, L., DuBrin, R. and Lynch, G., A comparative study of soluble calcium-dependent proteolytic activity in vertebrate brain, J. Neurobiol. 17:15–28 (1986).

    Article  CAS  Google Scholar 

  • Bennett, V., The membrane skeleton of human erythrocytes and its implication for more complex cells, Ann. Rev. Biochem. 54:272–304 (1985).

    Article  Google Scholar 

  • Bennett, V. and Davis, J., Erythrocyte ankyrin: immunoreactive analogues are associated with mitrotic structures in cultured cells and with microtubules in brain, Proc. Nat. Acad. Sci. USA 78:7550–7554 (1981).

    Article  CAS  Google Scholar 

  • Bennett, V. and Stenbuck, P. J., The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membranes, Nature 280:468–473 (1979).

    Article  CAS  Google Scholar 

  • Bennett, V., Davis, J. and Fowler, W. E., Brain spectrin, a membrane-associated protein related in structure and function to erythrocyte spectrin, Nature 299:126–131 (1982).

    Article  CAS  Google Scholar 

  • Berridge, M. J. and Irvine, R. F., Inositol Triphosphate, a novel second messenger in cellular signal transduction, Nature 312:315–321 (1984).

    Article  CAS  Google Scholar 

  • Bland, B. H., The physiology and pharmacology of hippocampal formation theta rhythms, Prog. in Neurobiol. 26:1–54 (1986).

    Article  CAS  Google Scholar 

  • Bodsch, W., Baudry, M. and Lynch, G., Activity-dependent breakdown of in vivo assembled spectrin in the neuronal cytoskeleton. (submitted for publication) (1986a).

    Google Scholar 

  • Bodsch, W., Baudry, M. and Lynch, G., In vivo turnover of brain spectrin: stimulation of degradation by depolarization, Abst. Society for Neuro-sci, (in press) (1986b).

    Google Scholar 

  • Branton, D., Cohen, C. M. and Tyler, J., Interaction of cytoskeleton proteins on the human erythrocyte membrane, Cell 24:24–32 (1981).

    Article  CAS  Google Scholar 

  • Browning, M., Baudry, M., Bennett, W. and Lynch, G., Phosphorylation-mediated changes in pyruvate dehydrogenase activity influence pyruvate-supported calcium accumulation by brain mitochondria, J. Neurochem. 36:1932–1940 (1981a).

    Article  CAS  Google Scholar 

  • Browning, M., Bennett, W., Kelly, P. and Lynch, G., The 40,000 Mr brain phosphoprotein influenced by high frequency synaptic stimulation is the alpha subunit of pyruvate dehydrogenase, Brain Res. 218:255–266 (1981b).

    Article  CAS  Google Scholar 

  • Burns, N. R., Ohanian, V. and Gratzer, W. B., Properties of brain spectrin (fodrin), FEBS Lett. 153:165–168 (1983).

    Article  CAS  Google Scholar 

  • Burridge, K., Kelly, T. and Mangeat, P., Nonerythrocyte spectrins actin-membrane attachment proteins occurring in many cell types, J. Cell Biol. 95:478–486 (1982).

    Article  CAS  Google Scholar 

  • Calvert, R., Bennett, P. and Gratzer, W. B., Properties and structural roles of the subunits of human spectrin, Eur. J. Biochem. 107:355–361 (1980).

    Article  CAS  Google Scholar 

  • Canellakis, E. S., Viceps-Madore, D., Kyriakidis, D. A. and Heller, J. S., The regulation and function of ornithine decarboxylase and of the poly-amines, Curr. Top. Cell. Regul. 15:155–202 (1979).

    CAS  Google Scholar 

  • Carlin, R. K., Bartelt, D. C. and Siekevitz, P., Identification of fodrin as a major calmodulin-binding protein in postsynaptic density preparations, J. Cell Biol. 96:443–448 (1983).

    Article  CAS  Google Scholar 

  • Chang, F. L. F. and Greenough, W. T., Transient and enduring morphological correlates of synaptic activity and efficacy change in the rat hippo-campal slice, Brain Res. 309:35–46 (1984).

    Article  CAS  Google Scholar 

  • Cohen, C. M., Tyler, J. M. and Branton, D., Spectrin-actin associations studied by electron microscopy of shadowed preparations, Cell 21:875–883 (1980).

    Article  CAS  Google Scholar 

  • Cohen, R. S., Blomberg, F., Berins, K. and Siekevitz, P., The structure of postsynpatic densities isolated from dog cerebral cortex, J. Cell Biol. 74:181–191 (1977).

    Article  CAS  Google Scholar 

  • Collinridge, G. L., Kehl, S. J. and McLennan, H., Excitatory amino acids in synaptic transmission in the Schaffer-collateral-commissural pathway of the rat hippocampus, J. Physiol. 334:33–46 (1983).

    Google Scholar 

  • Davies, P. J. A. and Klee, C. B., Calmodulin-binding proteins: a high molecular weight calmodulin-binding protein from bovine brain, Biochem. Int. 3:203–212 (1981).

    CAS  Google Scholar 

  • Davis, J. and Bennett, V., Brain Spectrin. Isolation of subunits and formation of hybrids with erythrocyte spectrin subunits, J. Biol. Chem. 258:7757–7766 (1983).

    CAS  Google Scholar 

  • Davis, J. Q. and Bennett, V., Brain Ankyrin: purification of a 72,000 Mr spectrin-binding domain, J. Biol. Chem. 259:1874–1881 (1984).

    CAS  Google Scholar 

  • Davis, J. Q. and Bennett, V., Brain Ankyrin: a membrane-associated protein with binding sites for spectrin, tubulin and the cytoplasmic domain of the erythrocyte anion channel, J. Biol. Chem. 259:13550–13559 (1984).

    CAS  Google Scholar 

  • DeMartino, G. N. and Blumenthal, D. K., Identification and partial purification of a factor that stimulates calcium-dependent proteases, Biochemistry 21:4297–4303 (1982).

    Article  CAS  Google Scholar 

  • Dunlop, D. S., Van Eiden, W. and Lajtha, A., Protein degradation rates in regions of the nervous system, Biochem. J. 170:637–642 (1978).

    CAS  Google Scholar 

  • Edelman, G. M., Surface modulation in cell recognition and cell growth, Science 192:218–226 (1976).

    Article  CAS  Google Scholar 

  • Feldman, J. A., A connectionist model of visual memory. In: “Parallel Models of Associative Memory” (G. E. Hinton and J. A. Anderson, Eds.) Lawrence Erlbaum (Hillsdale, NJ) pp 49–82 (1981).

    Google Scholar 

  • Fifkova, E., Markham, J. A. and Delay, R. J., Calcium in the spine apparatus of dendritic spines in the dentate molecular layer, Brain Res. 266: 163–168 (1983).

    Article  CAS  Google Scholar 

  • Fox, J. E. B. and Phillips, D. R., Stimulus-induced activation of the calcium-dependent protease within platelets, Cell Motility 3:579–588 (1983).

    Article  CAS  Google Scholar 

  • Gall, C., Brecha, N., Chang, T. and Karten, H., Localization of enkephalins in rat hippocampus, J. Comp. Neurol. 198:335–350 (1981).

    Article  CAS  Google Scholar 

  • Gall, G., Pico, R. and Lauterborn, J., Focal hippocampal lesions induce seizures and long-lasting changes in mossy fiver enkephalin and CCK immu-noreactivity, Peptides (in press) (1986).

    Google Scholar 

  • Glenney, J. R. Jr and Glenney, P., Comparison of spectrin isolated from erythrocyte and non-erythrocyte cells, Europ. J. Biochem. 144:529–539 (1984).

    Article  CAS  Google Scholar 

  • Glenney, J. R., Glenney, P. and Weber, K., F-actin binding and cross-linking properties of porcine brain fodrin, a spectrin-related molecule, J. Biol. Chem. 257:9781–9787 (1982).

    CAS  Google Scholar 

  • Goodman, S. R. and Zagon, I. S., Brain spectrin: a review, Brain Res. Bull. 13, 813, 832 (1985).

    Article  Google Scholar 

  • Greengard, P., Intracellular signals in the brain, Harvey Lect. 75:277–331 (1981).

    CAS  Google Scholar 

  • Hanbauer, I., Gimble, J. and Lovenberg, W., Changes in soluble calmodulin following activation of dopamine receptors in rat striatal slices, Neuropharm. 18:851–857 (1979).

    Article  CAS  Google Scholar 

  • Harris, A. S., Anderson, J. P., Yurchenco, P. D., Green, L. A. D., Ainger, V. J. and Morrow, J. S., Mechanisms of cytoskeletal regulation: functional and ontogenic diversity in human erythrocyte and brain beta spectrin, J. Cell Biochem. 30:51–69 (1986).

    Article  CAS  Google Scholar 

  • Harris, E. W., Ganong, A. H. and Cotman, C. W., Long-term potentiation in the hippocampus involves activation of N-Methyl-D-aspartate receptors, Brain Res. 323:132–137 (1984).

    Article  CAS  Google Scholar 

  • Hebb, D. O., The organization of behavior. Wiley (New York) (1949).

    Google Scholar 

  • Huganir, R. L. and Greengard, P., CAMP-dependent protein kinase phosphory-lates the nicotinic acetylcholine receptor, Proc. Nat. Acad. Sci. 80: 1130–1134 (1983).

    Article  CAS  Google Scholar 

  • Ingebritsen, T. S. and Cohen, P., Protein phosphatase: properties and role in cellular regulation, Science 221:331–338 (1983).

    Article  CAS  Google Scholar 

  • Ishikawa, M., Murofushi, H. and Sakai, H., Bundling of microtubules in vitro by fodrin, J. Biochem. 94:1209–1217 (1983).

    CAS  Google Scholar 

  • Jennings, L. K., Fox, J. E. B., Edwards, H. H. and Phillips, D. R., Changes in the cytoskeletal structure of human platelets following thrombin activation, J. Biol. Chem. 256:6927–6932 (1981).

    CAS  Google Scholar 

  • Kandel, E. R. and Schwartz, J. H., Molecular biology of learning: modulation of transmitter release, Science 218:433–443 (1982).

    Article  CAS  Google Scholar 

  • Kessler, M., Petersen, G., Vu, H. M., Baudry, M. and Lynch, G., Phe-Glu stimulated, chloride-dependent glutamate “binding” represents glutamate sequestration mediated by an exchange system (submitted for publication) (1986).

    Google Scholar 

  • Kirino, T. and Sano, K., Changes in the contralateral dentate gyrus in mongolian gerbils subjected to unilateral cerebral ischema, Acta Neuro-pathol. 50:121–128 (1980).

    Article  CAS  Google Scholar 

  • Kishimoto, A., Kajikawa, N., Tabuchi, H., Shiota, M. and Nishizuka, Y., Calcium-dependent neutral proteases, widespread occurrence of a species of protease active at lower concentrations of calcium, J. Biochem. 90: 884–892 (1981).

    Google Scholar 

  • Kitahara, A., Sasaki, T., Kikuchi, T., Yumoto, N., Hatanaka, M., Yoshimura, N. and Murachi, T., Large-scale purification of porcine calpain I and calpain II and comparison of proteolytic fragments of their subunits, J. Biochem. 95:1759–1766 (1984).

    CAS  Google Scholar 

  • Koch, C. and Poggio, T., A theoretical analysis of electrical properties of spines, Proc. Roy. Soc. Lond. (B) 218:455–477 (1983).

    Article  CAS  Google Scholar 

  • Larson, J. and Lynch, G., Synaptic potentiation in hippocampus by patterned stimulation involves two events, Science 232:985–988 (1986).

    Article  CAS  Google Scholar 

  • Larson, J., Wong, D. and Lynch, G., Patterned stimulation at the theta frequency is optimal for induction of long-term potentiation, Brain Res. 368:347–350 (1986).

    Article  CAS  Google Scholar 

  • Lee, K., Schottler, F., Oliver, M. and Lynch, G., Brief bursts of high-frequency stimulation produce two types of structural change in rat hippocampus, J. Neurophysiol. 44:247–258 (1980).

    CAS  Google Scholar 

  • Levine, J. and Willard, M., Fodrin: Axonally transported polypeptides associated with the internal periphery of many cells, J. Cell. Biol. 90:631–643 (1981).

    Article  CAS  Google Scholar 

  • Lewis, M. E., Laksmanan, J., Nagaiah, K., MacDonnell, P. C. and Guroff, G., Nerve growth factor increases activity of ornithine decarboxylase in rat brain, Proc. Natl. Acad. Sci. (U.S.A.) 75:1021–1023 (1978).

    Article  CAS  Google Scholar 

  • Libby, P. and Goldberg, A. L., Leupeptin, a protease inhibitor, decreases protein degradations in normal and diseased muscles, Science 199:534–536 (1978).

    Article  CAS  Google Scholar 

  • Lin, D. C., Flanagan, M. D. and Lin, S., Complexes containing actin and spectrin from erythrocyte and brain, Cell Motility 3:375–382 (1983).

    Article  CAS  Google Scholar 

  • Linn, T., Pettit, F. and Reed, L., Alpha-keto acid and dehydrogenase complexes. Regulation of the activity of the pyruvate dehydrogenase complex from bed kidney mitochondria by phosphorylation and dephosphory-lation, Proc. Nat. Acad. Sci. U.S.A. 62:234–241 (1969).

    Article  CAS  Google Scholar 

  • Llinas, R., McGuinness, T. L., Leonard, C. S., Sugimori, M. and Greengard, P., Intraterminal injection of synapsin I or calcium/calmodulin-depen-dent protein kinase II alters neurotransmitter release at the squid giant synapse, Proc. Nat. Acad. Sci. 82:3025–3039 (1985).

    Article  Google Scholar 

  • Lu, P. W., Soong, C. J. and Tao, M., Phosphorylation of ankyrin decreases its affinity for spectrin tetramer, J. Biol. Chem. 260:14958–14964 (1985).

    CAS  Google Scholar 

  • Lynch, G. and Baudry, M., Origins and manifestations of neuronal plasticity in the hippocampus. In Clinical Neurosciences (W. Willis, Ed.) Churchill-Livingstone Publishers, pp. 171–202 (1983).

    Google Scholar 

  • Lynch, G., Halpain, S. and Baudry, M., Effects of high frequency synaptic stimulation on glutamate receptor binding studied with a modified in vitro hippocampus slice preparation, Brain Res. 244:101–111 (1982).

    Article  CAS  Google Scholar 

  • Lynch, G., Larson, J. and Baudry, M., Proteases, Neural Stability and Brain Aging: An Hypothesis. In Treatment Development Strategies for Alzheimer’s Disease (T. Crook, R. Bartus, S. Ferris, and S. Gershan, Eds.) Mark Powley Assoc (Madison) (in press) (1986).

    Google Scholar 

  • Lynch, G., Larson, J., Kelso, S., Barrionuevo, G. and Schottler, F., Intracellular injections of EGTA block the induction of hippocampal long-term potentiation, Nature 305:719–721 (1983).

    Article  CAS  Google Scholar 

  • Malenka, R. C., Madison, D. V., Andrade, R. and Nicoll, R. A., Phorbol esters mimic some cholinergic actions in hippocampal pyramidal neurons, J. Neurosci. 6:475–480 (1986).

    CAS  Google Scholar 

  • Malik, M. N., Meyers, L. A., Iqbal, K., Sheikh, A. M., Scotto, L. and Wis-niewski, H. M., Calcium activated proteolysis of fibrous proteins in central nervous system, Life Sci. 19:795–802 (1981).

    Article  Google Scholar 

  • Margolis, R. L. and Wilson, L., Opposite end assembly and disassembly of microtubules at steady state in vitro, Cell 13:1–8 (1978).

    Article  CAS  Google Scholar 

  • Mayer, M. L., Westbrook, G. L. and Guthrie, P. B., Voltage-dependent block by Mg2+ of NMDA responses in spinal and neurons, Nature 309:261–367 (1984).

    Article  CAS  Google Scholar 

  • Mellgren, R. L., Canine cardiac calcium-dependent proteases: resolution of two forms with different requirements for calcium, FEBS Lett. 109:129–133 (1980).

    Article  CAS  Google Scholar 

  • Murachi, T., Hatanaka, M., Yasumoto, Y., Nakayama, N. and Tanaka, K., A quantitative distribution study on calpain and calpastatin in rat tissues and cells, Biochem. Internat. 2:651–656 (1981).

    CAS  Google Scholar 

  • Nestler, E. J., Walaas, S. I. and Greengard, P., Neuronal phosphoproteins, physiological and clinical implications, Science 225:1357–1364 (1984).

    Article  CAS  Google Scholar 

  • Nicolson, G. L., Topographic display of cell surface components and their role in transmembrane signaling, Curr. Top. Dev. Biol. 13:305–338 (1979).

    Article  CAS  Google Scholar 

  • Nishida, E., Kotani, S., Kuwaki, T. and Sakai, H., Phosphorylation of micro-tubule-associated proteins (MAPs) controls both microtubule assembly and MAPs-actin interaction. In Biological Functions of Microtubules and Related Structures (H. Sakai, H. Mohri, and G. Borisy, Eds.). Academic Press (Toyko, New York) pp 285–295 (1982).

    Google Scholar 

  • Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. and Prochiantz, A., Magnesium gates glutamate-activated channels in mouse central neurons, Nature 307:462–465 (1984).

    Article  CAS  Google Scholar 

  • Pin, J. P., Bockaert, J. and Recasens, M., The Ca2 /C1-dependent L-3H-gluta-mate binding: a new receptor or a particular transport process? FEBS Lett. 175:31–36 (1984).

    Article  CAS  Google Scholar 

  • Perlmutter, L. S., Gall, C., Siman, R. and Lynch, G., Ultrastructural localization of a calcium-activated protease (calpain) in rat CNS: association with microtubules, mitochondria and synaptic elements, Abst. Soc. for Neurosci. 11:267 (1985).

    Google Scholar 

  • Pontremoli, S., Salamino, F., Sparatore, B., Michetti, M., Sacco, O. and Melloni, E., Following association to the membrane, human erythrocyte pro-calpain is converted and released as fully activated calpain, Biochem. Biophys. Acta. 831:335–339 (1985).

    Article  CAS  Google Scholar 

  • Rasmussen, H. and Barrett, P. O., Calcium messenger system: an integrated view, Physiol. Rev. 64:938–984 (1984).

    CAS  Google Scholar 

  • Robinson, H. and Koch, C., An information storage mechanism: calcium and spines, Artificial Intelligence Memo 779 (CBID Paper 004) MIT press (Cambridge) pp 1–14 (1984).

    Google Scholar 

  • Routtenberg, A., Lovinger, D. and Steward, O., Selective increase in phosphorylation of a 47-kDa protein (F-1) directly related to long-term potentiation, Behav. and Neural Biol. 43:1–9 (1985).

    Article  Google Scholar 

  • Sandoval, I. V. and Weber, K., Calcium-induced inactivation of microtubule formation in brain extracts, Eur. J. Biochem. 92:463–470 (1978).

    Article  CAS  Google Scholar 

  • Sattilaro, R. F. and Dentier, W. L., The associaton of MAP-2 with microtubules, actin filaments, and coated vesicles. In Biological Functions of Microtubulin and Related Structures (H. Sakai, H. Mohri and G. Borisy, Eds.) Academic Press (Tokyo, New York) pp 297–309 (1982).

    Google Scholar 

  • Seals, J. R. and Czech, M. P., Evidence that insulin activates an intrinsic plasma membrane protease in generating a secondary chemical mediator, J. Biol. Chem. 255:6529–6531 (1980).

    CAS  Google Scholar 

  • Seals, J. R. and Czech, M. P., Characterization of a pyruvate dehydrogenase activator released by adipocyte plasma membranes in response to insulin, J. Biol. Chem. 256:2894–2899 (1981).

    CAS  Google Scholar 

  • Seubert, P., Baudry, M. Dudek, S. and Lynch, G., Calmodulin stimulates the degradation of brain spectrin by calpain, Synapse (in press) (1986).

    Google Scholar 

  • Siman, R., Baudry, M. and Lynch, G., Brain fodrin: substrate for the endogenous calcium-activated protease calpain I. Proc. Nat. Acad. Sci. (USA) 81:3276–3280 (1984).

    Article  Google Scholar 

  • Siman, R., Baudry, M. and Lynch, G., Glutamate receptor regulation by proteolysis of the cytoskeletal protein fodrin, Nature 315:225–227 (1985).

    Article  Google Scholar 

  • Siman, R., Baudry, M., and Lynch, G., Calcium-activated proteases as possible mediators of synaptic plasticity. In New Insights into Synaptic Function (G. Edelman, W. M. Cowan and W. Gall, Eds.) John Wiley, New York (in press) (1985).

    Google Scholar 

  • Simonson, L., Baudry, M., Siman, R. and Lynch, G., Regional distribution of soluble calcium-activated proteinase activity in neonatal and adult rat brain, Brain Res. 327:153–159 (1985).

    Article  CAS  Google Scholar 

  • Singer, S. J., The molecular organization of membranes, Ann Rev. Biochem. 43:805–833 (1974).

    Article  CAS  Google Scholar 

  • Sobue, K., Kanda, K., Invi, M., Morimoto, K. and Kakiuchi, S., Actin polymerization induced by calspectin, a calmodulin-binding spectrin-like protein, FEBS Lett. 148:221–225 (1982).

    Article  CAS  Google Scholar 

  • Speicher, D. W. and Marchesi, V. T., Erythrocyte spectrin is comprised of many homologous triple helical segments, Nature 311:177–180 (1984).

    Article  CAS  Google Scholar 

  • Staubli, U., Baudry, M. and Lynch, G., Olfactory discrimination learning is blocked by leupeptin, a thiol-proteinase inhibitor, Brain Res. 337:333–336 (1985).

    Article  CAS  Google Scholar 

  • Staubli, U., Baudry, M. and Lynch, G., Leupeptin, a thiol-proteinase inhibitor, causes a selective impairment of spatial maze performance in rats, Behav. and Neural Biol. 40:58–69 (1984).

    Article  CAS  Google Scholar 

  • Storm-Mathisen, J., Localization of transmitter candidates in the brain: The hippocampal formation as a model, Prog. Neurobiol. 8:119–181 (1977).

    Article  CAS  Google Scholar 

  • Swanson, L. W., Teyler, T. J. and Thompson, R. F., Hippocampal long-term potentiation: mechanisms and implications for memory, Neurosci. Res. Prog. Bull. 20, No. 5 (1982).

    Google Scholar 

  • Takeyama, Y., Nakanishi, H., Uratsuji, Y., Kishimoto, A. and Nishizuka, Y., A calcium-protease activator associated with brain microsomal-insoluble elements, FEBS Lett. 194:110–114 (1986).

    Article  CAS  Google Scholar 

  • Teyler, T. J. and Discenna, P., Long-term potentiation as a candidate mnemonic device, Brain Res. Rev. 7:15–28 (1984).

    Article  Google Scholar 

  • Tsukita, S., Ishikawa, H., Kurokana, M., Morimoto, K., Sobue, K. and Kakiuchi, S., Binding sites of calmodulin and actin on the brain spectrin, calspectrin, J. Cell. Biol. 97:574–578 (1983).

    Article  CAS  Google Scholar 

  • Tsuyama, S., Bramblett, G. T., Huang, K. P. and Flavin, M., Calcium/phospho-lipid-dependent kinase recognized sites in microtubule-associated protein 2 which are phosphoryalted in living brain and are not accessible to other kinases, J. Biol. Chem. 261:4110–4116 (1986).

    CAS  Google Scholar 

  • Vanderwolf, C. H., Kramis, R., Gillespie, L. A. and Bland, B. H., Hippocampal rhythmical slow activity and neocortical low voltage fast activity: relations to behavior. In The Hippocampus, Vol 2., Neurophysiology and Behavior (R. L. Isaacson and K. H. Pribram, Eds.) Plenum, New York pp 101–128 (1975).

    Google Scholar 

  • Weeds, A., Actin-binding proteins — regulators of cell architecture and motility, Nature 296:811–816 (1982).

    Article  CAS  Google Scholar 

  • Weisenberg, R. C., Microtubule formation in vitro in solutions containing low calcium concentrations, Science 177:1104–1105 (1972).

    Article  CAS  Google Scholar 

  • Wenzel, J. and Matthies, H., Morphological changes in the hippocampal formation accompanying memory formation and long-term potentiation. In Memory Systems of the Brain (N. Weinberger, J. McGaugh and G. Lynch, Eds.) The Guilford Press, New York, pp 150–170 (1985).

    Google Scholar 

  • Wheelock, M. J., Evidence for two structurally different forms of skeletal muscle C2+-activated protease, J. Biol. Chem. 257:12471–12474 (1982).

    CAS  Google Scholar 

  • White, J. D., Gall, C. M. and McKelvy, J. F., Enkephalin biosynthesis and enkephalin gene expression are increased in hippocampal mossy fibers following a seizure-producing lesion (submitted for publication) (1986).

    Google Scholar 

  • Woods, C. M. and Lazarides, E., Spectrin assembly in avian erythroid development is determined by competing reactions of subunit homo-and hetero-oligomerizatin, Nature 321:85–89 (1986).

    Article  CAS  Google Scholar 

  • Yoshimura, N., Kikuchi, T., Sasaki, T., Kitahara, A., Hatanaka, M. and Murachi, T., Two distinct Ca2+-proteases (calpain I and calpain II) purified concurrently by the same method from rat kidney, J. Biol. Chem. 258:8883–8889 (1983).

    CAS  Google Scholar 

  • Yoshino, H. and Marchesi, V. T., Isolations of spectrin subunits and reas-sociation in vitro: analysis by fluorescence polarization, J. Biol. Chem. 259:4496–4500 (1984).

    CAS  Google Scholar 

  • Yu, J., Fischman, D. A. and Steck, T. L., Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents, J. Supramol. Struct. 1:233–248 (1973).

    Article  CAS  Google Scholar 

  • Zagon, I. S., McLaughlin, P. J. and Goodman, S. R., Localization of spectrin in mammalian brain, J. Neurosci. 4:3089–3100 (1984).

    CAS  Google Scholar 

  • Zimmerman, V. J. P. and Schlaepfer, W. W., Characterization of a brain calcium-activated protease that degrades neurofilament proteins, Biochemistry 21:3977–3983 (1982).

    Article  CAS  Google Scholar 

  • Zimmerman, V. J. P. and Schlaepfer, W. W., Calcium-activated neutral protease (CANP) in brain and other tissues, Progress in Neurobiol. 23:63–78 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Baudry, M., Seubert, P., Lynch, G. (1987). A Possible Second Messenger System for the Production of Long-Term Changes in Synapses. In: Ehrlich, Y.H., Lenox, R.H., Kornecki, E., Berry, W.O. (eds) Molecular Mechanisms of Neuronal Responsiveness. Advances in Experimental Medicine and Biology, vol 221. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7618-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7618-7_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7620-0

  • Online ISBN: 978-1-4684-7618-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics