Skip to main content

The Lipoxin Biosynthetic Circuit and their Actions with Human Neutrophils

  • Chapter
Cell-Cell Interactions in the Release of Inflammatory Mediators

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 314))

Abstract

Signal transduction in inflammatory cells is associated with the release and oxygenation of arachidonic acid by lipoxygenases (1, 2). The lipoxins (LX) are a recent addition to the family of biologically active products generated from arachidonic acid collectively termed eicosanoids. Members of the LX series contain a conjugated tetraene structure (3) and display a unique spectrum of bioactivities which distinguish them from other eicosanoids (3, 4). Along these lines, recent results from several laboratories (5–9) indicate that LXA4** blocks some of the “proinflammatory” actions of leukotrienes. Taken together they suggest that LX may serve as chalones in inflammatory responses. Therefore, complete knowledge of their biosynthesis, temporal association of formation and relationship to other eicosanoids is essential to unraveling the functions of these tetraene-containing eicosanoids in inflammation as well as other physiologic events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Samuelsson, Leukotrienes: Mediators of immediate hypersensitivity reactions and inflammation, Science 220: 568 (1983).

    Article  PubMed  CAS  Google Scholar 

  2. B. Samuelsson, S.-E. Dahlén, J.Å. Lindgren, C.A. Rouzer, and C.N. Serhan, Leukotrienes and lipoxins: Structures, biosynthesis, and biological effects, Science 237: 1171 (1987).

    Article  PubMed  CAS  Google Scholar 

  3. C.N. Serhan, Lipoxins: eicosanoids carrying intra-and intercellular messages, J. Bioenereet. Biomembr. 23: 105 (1991).

    CAS  Google Scholar 

  4. S. Nigam, S. Fiore, F.W. Luscinskas, and C.N. Serhan, Lipoxin A4 and lipoxin B4 stimulate the release but not the oxygenation of arachidonic acid in human neutrophils: Dissociation between lipid remodeling and adhesion, J. Cell. Phvsiol. 143: 512 (1990).

    Article  CAS  Google Scholar 

  5. K.F. Badr, D.K. DeBoer, M. Schwartzberg, and C.N. Serhan, Lipoxin A4 antagonizes cellular and in vivo action of leukotriene D4 in rat glomerular mesangial cells: Evidence for competition at a common receptor, Proc. Natl. Acad. Sci. USA 86: 3438 (1989).

    Article  PubMed  CAS  Google Scholar 

  6. P. Hedqvist, J. Raud, U. Palmertz, J. Haeggström, K.C. Nicolaou, and S.-E. Dahlén, Lipoxin A4 inhibits leukotriene B4-induced inflammation in the hamster cheek pouch, Acta Phvsiol. Scand. 137: 571 (1989).

    Article  CAS  Google Scholar 

  7. T.H. Lee, C.E. Horton, U. Kyan-Aung, D. Haskard, A.E.G. Crea, and B.W. Spur, Lipoxin A4 and lipoxin B4 inhibit chemotactic responses of human neutrophils stimulated by leukotriene B4 and N-formyl-L-methionyl-L-leucyl-L-phenylalanine, Clin. Sci. 77: 195 (1989).

    PubMed  CAS  Google Scholar 

  8. T.H. Lee, A.E.G. Crea, V. Gant, B.W. Spur, B.E. Marron, K.C. Nicolaou, E. Reardon, M. Brezinski, and C.N. Serhan, Identification of lipoxin A4 in the bronchoalveolar lavage fluid obtained from patients with pulmonary disease, Am. Rev. Respir. Pis. 141: 1453 (1990).

    CAS  Google Scholar 

  9. B.M. Grandordy, H. Lacroix, E. Mavoungou, S. Krilis, A.E.G. Crea, B.W. Spur, and T.H. Lee, Lipoxin A4 inhibits phosphoinositide hydrolysis in human neutrophils, Biochem. Biophys. Res. Commun. 167: 1022 (1990).

    Article  PubMed  CAS  Google Scholar 

  10. A.J. Marcus, M.J. Broekman, L.B. Safier, H.L. Ullman, N. Islam, C.N. Serhan, L.E. Rutherford, H.M. Korchak, and G. Weissmann, Formation of leukotrienes and other hydroxy acids during platelet-neutrophil interactions in vitro, Biochem. Biophys. Res. Commun. 109:130(1982).

    Google Scholar 

  11. C.N. Serhan and K.-A. Sheppard, Lipoxin formation during human neutrophil-platelet interactions: evidence for the transformation of leukotriene A4 by platelet 12-lipoxygenase in vitro, J. Clin. Invest. 85: 772 (1990).

    Article  PubMed  CAS  Google Scholar 

  12. C. Edenius, J. Haeggström, and J.A. Lindgren, Transcellular conversion of endogenous arachidonic acid to lipoxins in mixed human platelet-granulocyte suspensions, Biochem. Biophys. Res. Commun. 157: 801 (1988).

    Article  PubMed  CAS  Google Scholar 

  13. J.A. Maclouf and R.C. Murphy, Transcellular metabolism of neutrophil-derived leukotriene A4 by human platelets: a potential cellular source of leukotriene C4, J. Biol. Chem. 263: 174 (1988).

    PubMed  CAS  Google Scholar 

  14. C. Edenius, K. Heidvall, and J.A. Lindgren, Novel transcellular interaction: conversion of granulocyte-derived leukotriene A4 to cysteinyl-containing leukotrienes by human platelets, Eur. J. Biochem. 178: 81 (1988).

    Article  PubMed  CAS  Google Scholar 

  15. C.N. Serhan, M. Hamberg, and B. Samuelsson, Lipoxins: novel series of biologically active compounds formed from arachidonic acid in human leukocytes, Proc. Natl. Acad. Sci. USA 81: 5335 (1984).

    Article  PubMed  CAS  Google Scholar 

  16. C.N. Serhan, K.C. Nicolaou, S.E. Webber, C.A. Veale, S.-E. Dahlén, T.J. Puustinen, and B. Samuelsson, Lipoxin A: stereochemistry and biosynthesis, J. Biol. Chem. 261: 16340 (1986).

    PubMed  CAS  Google Scholar 

  17. M. Brezinski and C.N. Serhan, Selective incorporation of 15-HETE in phosphatidylinositol of human neutrophils: agonist-induced deacylation and transformation of stored hydroxyeicosanoids, Proc. Natl. Acad. Sci. USA 87: 6248 (1990).

    Article  PubMed  CAS  Google Scholar 

  18. K.-A. Sheppard, S. Greenberg, C Funk, M. Romano, and C.N. Serhan, Lipoxin generation by human megakaryocyte-induced 12-lipoxygenase, Biochim. Biophys. Acta, in press.

    Google Scholar 

  19. T. Puustinen, S.E. Webber, K.C. Nicolaou, J. Haeggström, C.N. Serhan, and B. Samuelsson, Evidence for a 5(6)-epoxytetraene intermediate in the biosynthesis of lipoxins in human leukocytes: Conversion into lipoxin A by cytosolic epoxide hydrolase, FEBS Lett. 207: 127 (1986).

    Article  PubMed  CAS  Google Scholar 

  20. J.A. Maclouf, B.F. de Laclos, and P. Borgeat, Stimulation of leukotrienes biosynthesis in human blood leukocyte by platelet-derived 12-hydroperoxy-icosatetraenoic acid, Proc. Natl. Acad. Sci. USA 79: 6042 (1982).

    Article  PubMed  CAS  Google Scholar 

  21. A.J. Marcus, L.B. Safier, H.L. Ullman, M.J. Broekman, N. Islam, T.D. Oglesby, and R.R. Gorman, 12S, 20-Dihydroxyicosatetraenoic acid: A new icosanoid synthesized by neutrophils from 12S-hydroxyicosatetraenoic acid produced by thrombin-or collagen-stimulated platelets, Proc. Natl. Acad. Sci. USA 81: 903 (1984).

    Article  PubMed  CAS  Google Scholar 

  22. C.A. Dahinden, J. Zingg, F.E. Maly, and A.L. de Weck, Leukotriene production in human neutrophils primed by recombinant human granulocyte/macrophage colony-stimulating factor and stimulated with the complement component C5a and fMLP as second signals, J. EXP. Med. 167: 1281 (1988).

    Article  PubMed  CAS  Google Scholar 

  23. S.R. McColl, E. Krump, P.H. Naccache, and P. Borgeat, Enhancement of human neutrophil leukotriene synthesis by human granulocyte-macrophage colony-stimulating factor, Agents Actions 27: 465 (1989).

    Article  PubMed  CAS  Google Scholar 

  24. D.A. Brezinski, and C.N. Serhan, Characterization of lipoxins by combined gas chromatography and electron-capture negative ion chemical ionization mass spectrometry: formation of lipoxin A4 by stimulated human whole blood, Biol. Mass Soectrom. 20: 45 (1991).

    Article  CAS  Google Scholar 

  25. C.N. Serhan, On the relationship between leukotriene and lipoxin production by human neutrophils: evidence for differential metabolism of 15-HETE and 5-HETE, Biochim. Biophys. Acta 1004: 158 (1989).

    PubMed  CAS  Google Scholar 

  26. C.N. Serhan, U. Hirsch, J. Palmblad, and B. Samuelsson, Formation of lipoxin A by granulocytes from eosinophilic donors. FEBS Lett. 217: 242 (1987).

    Article  PubMed  CAS  Google Scholar 

  27. S. Fiore and C.N. Serhan, Formation of lipoxins and leukotrienes during receptor-mediated interactions of human platelets and recombinant human granulocyte/macrophage colony-stimulating factor-primed neutrophils, J. Exp. Med. 172: 1451 (1990).

    Article  PubMed  CAS  Google Scholar 

  28. A.A. Spector, J.A. Gordon, and S.A. Moore, Hydroxyeicosatetraenoic acids (HETES), Prog. Lipid Res. 27: 271 (1988).

    Article  PubMed  CAS  Google Scholar 

  29. K. Fogh, H. Søgaard, T. Herlin, and K. Kragballe, Improvement of psoriasis vulgaris after intralesional injections of 15-hydroxyeicosatetraenoic acid (15-HETE), J. Am. Acad. Dermatol. 18:279(1988).

    Google Scholar 

  30. K. Fogh, E.S. Hansen, T. Herlin, V. Knudsen, T.B. Henriksen, H. Ewald, C. Bünger, and K. Kragballe, 15-Hydroxy-eicosatetraenoic acid (15-HETE) inhibits carrgeenan-induced experimental arthritis and reduces synovial fluid leukotriene B4 (LTB4), Prostaglandins 37: 213 (1989).

    Article  PubMed  CAS  Google Scholar 

  31. J.Y. Vanderhoek, R.W. Bryant, and J.M. Bailey, Inhibition of leukotriene biosynthesis by the leukocyte product 15-hydroxy-5, 8, 11, 13-eicosatetraenoic acid, J.Biol.Chem. 255: 10064 (1980).

    PubMed  CAS  Google Scholar 

  32. B.N.Y. Setty and M.J. Stuart, 15-Hydroxy-5, 8, 11, 13-eicosatetraenoic acid inhibits human vascular cyclooxygenase: potential role in diabetic vascular disease, J. Clin. Invest. 77: 202 (1986).

    Article  PubMed  CAS  Google Scholar 

  33. C.N. Serhan, On the relationship between leukotriene and lipoxin production by human neutrophils: Evidence for differential metabolism of 15-HETE and 5-HETE, Biochim. Biophys. Acta 1004: 158 (1989).

    PubMed  CAS  Google Scholar 

  34. S.-E. Dahlén and C.N. Serhan, 1991, Lipoxins: Bioactive lipoxygenase interaction products, in: “Lipoxygenases and Their Products,” A. Wong and S. Crooke, eds., Academic Press, San Diego.

    Google Scholar 

  35. W.F. Stenson and C.W. Parker, 12-L-hydroxy-5,8,10,14-eicosatetraenoic acid, a chemotactic fatty acid, is incorporated into neutrophil phospholipids and triglyceride, Prostaglandins 18: 285 (1979).

    Article  PubMed  CAS  Google Scholar 

  36. E.L. Becker, J.C. Kermode, P.H. Naccache, R. Yassin, J.J. Munoz, M.L. Marsh, C.-K. Huang, and R.I. Sha’afi, Pertussis toxin as a probe of neutrophil activation, Fed. Proc. Fed. Am. Soc. Exp. Biol. 45, 2151 (1986).

    CAS  Google Scholar 

  37. J.J. Murray, A.B. Tonnel, A.R. Brash, L.J. Roberts II, P. Gosset, R. Workman, A. Capron, and J.A. Oates, Release of prostaglandin D2 into human airways during acute antigen challenge, N. Engl. J. Med. 315: 800 (1986).

    Article  PubMed  CAS  Google Scholar 

  38. M.J. Holtzman, A. Pentland, N.L. Baenziger, and J.R. Hansbrough, Heterogeneity of cellular expression of arachidonate 15-lipoxygenase: implications of biological activity, Biochim. Biophys. Acta 1003: 204 (1989).

    PubMed  CAS  Google Scholar 

  39. W.F. Stenson and C.W. Parker, Metabolism of arachidonic acid in ionophore-stimulated neutrophils: esterification of a hydroxylated metabolite into phospholipids, J. Clin. Invest. 64: 1457 (1979).

    Article  PubMed  CAS  Google Scholar 

  40. L. Stenke, B. Näsman-Glaser, C. Edenius, J. Samuelsson, J. Palmblad and J.A. Lindgren, 1990, Lipoxygenase products in myeloproliferative disorders: increased leukotriene C4 and decreased lipoxin formation in chronic myeloid leukemia, in: “Advances in Prostaglandin, Thromboxane, and Leukotriene Research,” Vol. 21, B. Samuelsson et al., eds, Raven Press, New York.

    Google Scholar 

  41. T.D. Hill, J.G. White, and G.H.R. Rao, The influence of glutathione depleting agents on human platelet function, Thromb. Res. 53: 457 (1989).

    Article  PubMed  CAS  Google Scholar 

  42. T.D. Hill, J.G. White, and G.H.R. Rao, Role of glutathione and glutathione peroxidase in human platelet arachidonic acid metabolism, Prostaglandins 38: 21 (1989).

    Article  PubMed  CAS  Google Scholar 

  43. M. Abe and T.E. Hugli, Characterization of leukotriene C4 synthetase in mouse peritoneal exudate cells, Biochim. Biophys. Acta 959: 386 (1988).

    PubMed  CAS  Google Scholar 

  44. R.O. Morgan and A.C. Newby, Nitroprusside differentially inhibits ADP-stimulated calcium influx and mobilization in human platelets, Biochem. J. 258: 447 (1989).

    PubMed  CAS  Google Scholar 

  45. J. Palmblad, H. Gyllenhammar, B. Ringertz, C.N. Serhan, B. Samuelsson, and K.C. Nicolaou, The effects of lipoxin A and lipoxin B on functional responses of human granulocytes, Biochem. Biophys. Res. Commun. 145: 168 (1987).

    Article  PubMed  CAS  Google Scholar 

  46. S. Fiore, M. Romano, and C.N. Serhan, 1990, Lipoxin and leukotriene production during receptor-activated interactions between human platelets and cytokine-primed neutrophils, in: “Advances in Prostaglandin, Thromboxane, and Leukotriene Research,” Vol. 21, B. Samuelsson et al., eds, Raven Press, New York.

    Google Scholar 

  47. G.M. Bokoch and A.G. Gilman, Inhibition of receptor-mediated release of arachidonic acid by pertussis toxin, Cell 39: 301 (1984).

    Article  PubMed  CAS  Google Scholar 

  48. C.N. Serhan, M.J. Broekman, H.M. Korchak, A.J. Marcus, and G. Weissmann, Endogenous phospholipid metabolism in stimulated neutrophils. Differential activation by fMLP and PMA, Biochem. Biophys. Res. Commun. 107: 951 (1982).

    Article  PubMed  CAS  Google Scholar 

  49. E.M. Wynkoop, M.J. Broekman, H.M. Korchak, A.J. Marcus, and G. Weissmann, Phospholipid metabolism in human neutrophils activated by N-formyl-methionyl-leucyl-phenylalanine, Biochem. J. 236: 829 (1986).

    PubMed  CAS  Google Scholar 

  50. A. Sellmayer, Th. Strasser, and P.C. Weber, Differences in arachidonic acid release, metabolism and leukotriene B4 synthesis in human polymorphonuclear leukocytes activated by different stimuli, Biochim. Biophys. Acta 927: 417 (1987).

    Article  PubMed  CAS  Google Scholar 

  51. S. Nigam, S. Nodes, G. Cichon, E.J. Corey, and C.R. Pace-Asciak, Receptor-mediated action of hepoxilin A3 releases diacylglycerol and arachidonic acid from human neutrophils, Biochem. Biophys. Res. Commun. 171: 944 (1990).

    Article  PubMed  CAS  Google Scholar 

  52. CE. Walsh, B.M. Waite, M.J. Thomas, and L.R. DeChatelet, Release and metabolism of arachidonic acid in human neutrophils, J. Biol. Chem. 256: 7228 (1981).

    PubMed  CAS  Google Scholar 

  53. F.H. Chilton and R.C Murphy, Remodeling of arachidonate-containing phosphoglycerides within the human neutrophil, J. Biol. Chem. 261: 7771 (1986).

    PubMed  CAS  Google Scholar 

  54. N. Okamura, M. Uchida, T. Ohtsuka, M. Kawanishi, and S. Ishibashi, Diverse involvements of Ni protein in superoxide anion production in polymorphonuclear leukocytes depending on the type of membrane stimulants, Biochem. Biophys. Res. Commun. 130: 939 (1985).

    Article  PubMed  CAS  Google Scholar 

  55. D.E. Feltner, R.H. Smith, and W.A. Marasco, Characterization of the plasma membrane bound GTPase from rabbit neutrophils. I. Evidence for an Ni-like protein coupled to the formyl peptide, C5a, and leukotriene B4 Chemotaxis receptors, J. Immunol. 137: 1961 (1986).

    PubMed  CAS  Google Scholar 

  56. S. Mong, G. Chi-Rosso, J. Miller, K. Hoffman, K.A. Razgaitis, P. Bender, and S.T. Crooke, Leukotriene B4 induces formation of inositol phosphates in rat peritoneal polymorphonuclear leukocytes, Molec. Pharmacol. 30: 235 (1986).

    CAS  Google Scholar 

  57. P. Borgeat and B. Samuelsson, Arachidonic acid metabolism in polymorphonuclear leukocytes: Effects of ionophore A23, 187, Proc. Natl. Acad. Sci. USA 76: 2148 (1979).

    Article  PubMed  CAS  Google Scholar 

  58. A.H. Lin, P.L. Ruppel, and R.R. Gorman, Leukotriene B4 binding to human neutrophils, Prostaglandins 28: 837 (1984).

    Article  PubMed  CAS  Google Scholar 

  59. S. Mong, G. Chi-Rosso, J. Miller, K. Hoffman, K.A. Razgaitis, P. Bender, and S.T. Crooke, Leukotriene B4 induces formation of inositol phosphates in rat peritoneal polymorphonuclear leukocytes, Mol. Pharmacol. 30: 235 (1986).

    PubMed  CAS  Google Scholar 

  60. D.W. Goldman and E.J. Goetzl, Selective transduction of human polymorphonuclear leukocyte functions by subsets of receptors for leukotriene B4, J. Allergy Clin. Immunol. 74: 373 (1984).

    Article  PubMed  CAS  Google Scholar 

  61. B. Spur, C. Jacques, A.E. Crea, and T.H. Lee, 1988, Lipoxins of the 5-series derived from eicosapentaenoic acid, in: “Lipoxins: Biosynthesis, Chemistry, and Biological Activities, P.Y.-K. Wong and C.N. Serhan, eds, Plenum Press, New York, Vol. 229 in Advances in Experimental Medicine and Biology.

    Google Scholar 

  62. J. Palmblad, H. Gyllenhammar, and B. Ringertz, 1988, Effects of lipoxins A and B on functional responses of human granulocytes, in: “Lipoxins: Biosynthesis, Chemistry, and Biological Activities,” P.Y.-K. Wong and C.N. Serhan, eds, Plenum Press, New York, Vol. 229 in Advances in Experimental Medicine and Biology.

    Google Scholar 

  63. C.N. Serhan and B. Samuelsson, 1988, Lipoxins: A new series of eicosanoids (biosynthesis, stereochemistry, and biological activities), in “Lipoxins: Biosynthesis, Chemistry, and Biological Activities,”, P.Y.-K. Wong and C.N. Serhan, eds, Plenum Press, New York, Vol. 229 in Advances in Experimental Medicine and Biology.

    Google Scholar 

  64. D.E. Agwu, L.C. McPhail, R.L. Wykle, and C.E. McCall, Mass determination of receptor-mediated accumulation of phosphatidate and diglycerides in human neutrophils measured by Coomassie blue staining and densitometry, Biochem. Biophys. Res. Commun. 159: 79 (1989).

    Article  PubMed  CAS  Google Scholar 

  65. M.E. Brezinski, M.A. Gimbrone, Jr., K.C. Nicolaou, and C.N. Serhan, Lipoxins stimulate prostacyclin generation by human endothelial cells, FEBS Lett. 245: 167 (1989).

    Article  PubMed  CAS  Google Scholar 

  66. E. Wikström, P. Westlund, K.C. Nicolaou, and S.-E. Dahlén, Lipoxin A4 causes generation of thromboxane A2 in the guinea-pig lung, Agents Actions 26: 90 (1989).

    Article  PubMed  Google Scholar 

  67. S.-E. Dahlén, Biological activities of lipoxins, in: “New Trends Lipid Mediators Research,” Vol. 3, U. Zor, Z. Naor, and A. Danon, eds., Karger, Basel, in press.

    Google Scholar 

  68. C.A. Rouzer and B. Samuelsson, Reversible, calcium-dependent membrane association of human leukocyte 5-lipoxygenase, Proc. Natl. Acad. Sci. USA 84: 7393 (1987).

    Article  PubMed  CAS  Google Scholar 

  69. T. Puustinen, M.M. Scheffer, and B. Samuelsson, Regulation of the human leukocyte 5-lipoxygenase: Stimulation by micromolar Ca2+ levels and phosphatidylcholine vesicles, Biochim. Biophys. Acta 960: 261 (1988).

    PubMed  CAS  Google Scholar 

  70. C.N. Serhan, A. Radin, J.E. Smolen, H. Korchak, B. Samuelsson, and G. Weissmann, Leukotriene B4 is a complete secretagogue in human neutrophils: A kinetic analysis, Biochem. Biophys. Res. Commun. 107: 1006 (1982).

    Article  PubMed  CAS  Google Scholar 

  71. J.T. O’Flaherty and J. Nishihira, 5-hydroxyicosatetraenoate promotes Ca2+ and protein kinase C mobilization in neutrophils, Biochem. Biophys. Res. Commun. 148: 575 (1987).

    Article  PubMed  Google Scholar 

  72. R. Snyderman and E.J. Goetzl, Molecular and cellular mechanisms of leukocyte Chemotaxis, Science 213: 830 (1981).

    Article  PubMed  CAS  Google Scholar 

  73. W.L. Smith, The eicosanoids and their biochemical mechanisms of action, Biochem. J. 259:315(1989).

    Google Scholar 

  74. S.-E. Dahlén, L. Franzén, J. Raud, C.N. Serhan, P. Westlund, E. Wikström, T. Björck, H. Matsuda, S.E. Webber, C.A. Veale, T. Puustinen, J. Haeggström, K.C. Nicolaou, and B. Samuelsson, 1988, Actions of lipoxin A4 and related compounds in smooth muscle preparations and on the microcirculation in vivo, in: “Lipoxins: Biosynthesis, Chemistry and Biological Activities,” P.Y.-K. Wong and C.N. Serhan, eds., Plenum Press, New York, Vol. 229 in Advances in Experimental Medicine and Biology.

    Google Scholar 

  75. J. Balsinde, E. Diez, and F. Mollinedo, Phosphatidylinositol-specific phospholipase D: A pathway for generation of a second messenger, Biochem. Biophys. Res. Commun. 154: 502 (1988).

    Article  PubMed  CAS  Google Scholar 

  76. C.N. Serhan, Components of the arachidonic acid signalling cascade: a brief update and hypothesis, in: “Advances in Rheumatology and Inflammation,” Eular Verlag, Basel, in press.

    Google Scholar 

  77. D.A. Brezinski, R.A. Nesto, and C.N. Serhan, Angioplasty triggers intracoronary release of leukotrienes and lipoxin A4: impact of aspirin therapy, submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Fiore, S., Brezinski, M.E., Sheppard, KA., Serhan, C.N. (1991). The Lipoxin Biosynthetic Circuit and their Actions with Human Neutrophils. In: Wong, P.YK., Serhan, C.N. (eds) Cell-Cell Interactions in the Release of Inflammatory Mediators. Advances in Experimental Medicine and Biology, vol 314. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6024-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6024-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6026-1

  • Online ISBN: 978-1-4684-6024-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics