Skip to main content

Effects of Volatile Anesthetics on the Intracellular Calcium Transient and Calcium Current in Cardiac Muscle Cells

  • Chapter
Mechanisms of Anesthetic Action in Skeletal, Cardiac, and Smooth Muscle

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 301))

Abstract

Volatile anesthetics at clinically useful concentrations depress the contractile force of the heart, and this effect in part contributes to a significant decrement of cardiovascular homeostasis. The mechanism of action underlying the negative inotropic effect of volatile anesthetics is not fully understood. There are several mechanisms by which agents may directly alter contractile performance of cardiac muscle. The first group represents the “upstream” mechanisms whereby intracellular calcium transients are mostly influenced by a variety of effectors at the surface membrane and sarcoplasmic reticulum. In addition, changes in sensitivity of troponin-C to calcium, and an altered response of the myofilaments to a given level of occupancy of the calcium binding sites on troponin C (“downstream” mechanisms) need to be considered as well. Accumulating evidence suggests that volatile anesthetics have multiple actions relevant to cardiac contractility, including a decrease in the sarcolemmal flux of calcium, a change in SR function, and a decrease in the level of intracellular ionized calcium during systole as well as a modification in the responsiveness of the contractile proteins to activation by calcium. A variety of the newest technology and methods, including the measurements of inward calcium current (ICa), measurement of calcium transients, and myofibrillar responsiveness to calcium, were utilized in the studies reported here in order to improve our knowledge of the effects of volatile anesthetics on cardiac muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. F. Rusy and H. Komai, Anesthetic depression of myocardial contractility: A review of possible mechanisms, Anesthesiology 67:745–766 (1987).

    Article  PubMed  CAS  Google Scholar 

  2. P. R. Housmans and I. Murat, Comparative effects of halothane, enflurane, and isoflurane at equipotent anesthetic concentrations on isolated ventricular myocardium of the ferret. I. Contractility, Anesthesiology 69:451–463 (1988).

    Article  PubMed  CAS  Google Scholar 

  3. H. Komai and B. F. Rusy, Negative inotropic effects of isoflurane and halothane in rabbit papillary muscles, Anesth Analg 66:29–33 (1987).

    Article  PubMed  CAS  Google Scholar 

  4. Z. J. Bosnjak and J. P. Kampine, Effects of halothane on transmembrane potentials, Ca2+ transients, and papillary muscle tension in the cat, Am J Physiol 251:H374–H381 (1986).

    PubMed  CAS  Google Scholar 

  5. C. Lynch III, S. Vogel, M. G. Pratila and N. Sperelakis, Enflurane depression of myocardial slow action potentials, J Pharmacol Exp Therap 222:405–409 (1982).

    CAS  Google Scholar 

  6. C. Lynch III, Differential depression of myocardial contractility by halothane and isoflurane in vitro, Anesthesiology 64:620–631 (1986).

    Article  PubMed  CAS  Google Scholar 

  7. J. L. Atlee and Z. J. Bosnjak, Mechanisms for cardiac dysrhythmias during anesthesia, Anesthesiology 72:347–374 (1990).

    Article  PubMed  Google Scholar 

  8. J. L. Seagard, Z. J. Bosnjak, F. A. Hopp, K. J. Kotrly, T. J. Ebert and J. P. Kampine, Cardiovascular effects of general anesthesia, in: “Effects of Anesthesia,” B. G. Covino, H. A. Fozzard, K. Rehder and G. Strichartz, eds., Williams & Wilkins, Baltimore (1985) pp. 149–177.

    Google Scholar 

  9. O. P. Hamill, A. Marty, E. Neher, B. Sakmann and F. J. Sigworth, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflugers Arch 391:85–100 (1981).

    Article  PubMed  CAS  Google Scholar 

  10. Z. J. Bosnjak, A. Aggarwal, L. A. Turner, J. Marijic and J. P. Kampine, Differential effects of inhalational anesthetics on calcium sensitivity (abstract), Biophys J 57:338a (1990).

    Google Scholar 

  11. D. G. Allen and C. H. Orchard, The effects of changes of pH on intracellular calcium transients in mammalian cardiac muscle, J Physiol (Lond) 335:555–567 (1983).

    CAS  Google Scholar 

  12. J. R. Blinks, W. G. Wier, P. Hess and F. G. Prcndergast, Measurements of Ca2+ concentration in living cells, Prog Biophys Mol Biol 40:1–114 (1982).

    Article  PubMed  CAS  Google Scholar 

  13. A. B. Seifen, R. H. Kennedy, J. P. Bray and E. Seifen, Estimation of minimum alveolar concentration (MAC) for halothane, enflurane and isoflurane in spontaneously breathing guinea pigs, Lab Anim Science 39:579–581 (1989).

    CAS  Google Scholar 

  14. A. Fabiato, Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum, Am J Physiol 245:C1–C14 (1983).

    PubMed  CAS  Google Scholar 

  15. M. Morad and Y. Goldman, Excitation-contraction coupling in heart muscle: Membrane control of development of tension. Prog Biophys Mol Biol 27:257–313 (1973).

    Article  Google Scholar 

  16. M. Nabauer, G. Callewaert, L. Cleemann and M. Morad, Regulation of calcium release is gated by calcium current not gating charge, in cardiac myocytes, Science 244:800–803 (1989).

    Article  PubMed  CAS  Google Scholar 

  17. N. Leblanc and J. R. Hume, Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum, Science 248:372–376 (1990).

    Article  PubMed  CAS  Google Scholar 

  18. E. W. McCleskey, A. P. Fox, D. Feldman and R. W. Tsien, Different types of calcium channels, J Exp Biol 124:177–190 (1986).

    PubMed  CAS  Google Scholar 

  19. B. Nilius, P. Hess, J. B. Lansman and R. W. Tsien, A novel type of cardiac channel in ventricular cells, Nature 316:443–446 (1985).

    Article  PubMed  CAS  Google Scholar 

  20. Y. Ikemoto, A. Yatani, H. Arimura and J. Yoshitake, Reduction of the slow inward current of isolated rat ventricular cells by thiamylal and halothane, Acta Anaesthesiol Scand 29:583–586 (1985).

    Article  PubMed  CAS  Google Scholar 

  21. J. Y. Su and W. G. L. Kerrick, Effects of halothane on caffeine-induced tension transients in functionally skinned myocardial fibers, Pflugers Arch 380:29–34 (1979).

    Article  PubMed  CAS  Google Scholar 

  22. J. Y. Su and W. G. L. Kerrick, Effects of enflurane on functionally skinned myocardial fibers from rabbits, Anesthesiology 52:385–389 (1980).

    Article  PubMed  CAS  Google Scholar 

  23. M. Endo and J. R. Blinks, Actions of sympathomimetic amines on the Ca2+ transients and contractions of rabbit myocardium: Reciprocal changes in myofibrillar responsiveness to Ca2+ mediated through α-and β-adrenoceptors, Circ Res 62:247–265 (1988).

    Google Scholar 

  24. E. Carafoli, Membrane transport of calcium: An overview, Methods Enzymol 157:3–11 (1988).

    Article  PubMed  CAS  Google Scholar 

  25. G. Inesi, Mechanism of calcium transport, Annu Rev Physiol 47:573–601 (1985).

    Article  PubMed  CAS  Google Scholar 

  26. W. G. Wier, Cytoplasmic [Ca2+] in mammalian ventricle: Dynamic control by cellular processes, Annu Rev Physiol 52:467–485 (1990).

    Article  PubMed  CAS  Google Scholar 

  27. D. T. Yue, E. Marban and W. G. Wier, Relationship between force and intracellular [Ca2+] in tetanized mammalian heart muscle, J Gen Physiol 87:223–242 (1986).

    Article  PubMed  CAS  Google Scholar 

  28. E. J. Krane and J. Y. Su, Comparison of the effects of halothane on skinned myocardial fibers from newborn and adult rabbit. I. Effects on contractile proteins, Anesthesiology 70:76–81 (1989).

    Article  PubMed  CAS  Google Scholar 

  29. J. Y. Su and W. G. L. Kerrick, Effects of halothane on Ca2+-activated tension development in mechanically disrupted rabbit myocardial fibers, Pflugers Arch 375:111–117 (1978).

    Article  PubMed  CAS  Google Scholar 

  30. I. Murat, R. Ventura-Clapier and G. Vassort, Halothane, enflurane and isoflurane decrease calcium sensitivity and maximum force in detergent-treated rat cardiac fibers, Anesthesiology 69:892–899 (1988).

    Article  PubMed  CAS  Google Scholar 

  31. D. A. Terrar and J. G. G. Victory, Isoflurane depresses membrane currents associated with contraction in myocytes isolated from guinea-pig ventricle, Anesthesiology 69:742–749 (1988).

    Article  PubMed  CAS  Google Scholar 

  32. D. A. Terrar and J. G. G. Victory, Effects of halothane on membrane currents associated with contraction in single myocytes isolated from guinea pig ventricle, Br J Pharmacol 94:500–508 (1988).

    PubMed  CAS  Google Scholar 

  33. Z. J. Bosnjak, F. D. Supan and N. J. Rusch, The effects of halothane, enflurane, and isoflurane on calcium current in isolated canine ventricular cells, Anesthesiology 74:340–345 (1991).

    Article  PubMed  CAS  Google Scholar 

  34. M. C. DeTraglia, H. Komai and B. F. Rusy, Differential effects of inhalation anesthetics on myocardial potentiated-state contractions in vitro, Anesthesiology 68:534–540 (1988).

    Article  Google Scholar 

  35. C. Lynch III, Differential depression of myocardial contractility by volatile anesthetics in vitro: Comparison with uncouplers of excitation-contraction coupling, J Cardiovasc Pharmacol 15:655–665 (1990).

    Article  PubMed  CAS  Google Scholar 

  36. M. Katsuoka, K. Kobayashi and S. T. Ohnishi, Volatile anesthetics decrease calcium content of isolated myocytes, Anesthesiology 70:954–960 (1989).

    Article  PubMed  CAS  Google Scholar 

  37. D. M. Wheeler, R. T. Rice and E. G. Lakatta, The action of halothane on spontaneous contractile waves and stimulated contractions in isolated rat and dog heart cclls, Anesthesiology 72:911–920 (1990).

    Article  PubMed  CAS  Google Scholar 

  38. Z. J. Bosnjak, S. Hoka, L. A. Turner and J. P. Kampine, Cardiac protection by halothane following ischemia and calcium paradox, in: “Cell Calcium Metabolism,” G. Fiskum, ed., Plenum Press, New York (1989) pp. 593–601.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Bosnjak, Z.J. (1991). Effects of Volatile Anesthetics on the Intracellular Calcium Transient and Calcium Current in Cardiac Muscle Cells. In: Blanck, T.J.J., Wheeler, D.M. (eds) Mechanisms of Anesthetic Action in Skeletal, Cardiac, and Smooth Muscle. Advances in Experimental Medicine and Biology, vol 301. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5979-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5979-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5981-4

  • Online ISBN: 978-1-4684-5979-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics