Skip to main content

Endosome Acidification and the Pathways of Receptor-Mediated Endocytosis

  • Chapter
Immunobiology of Proteins and Peptides IV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 225))

Abstract

Receptor-mediated endocytosis serves a variety of physiologically significant purposes (Goldstein et al., 1985). These include regulation of surface receptors, clearance of various macromolecules from the circulation, uptake of nutrients, transport of macromolecules across cells, cholesterol homeostasis, infection by some viruses, and penetration into the cytoplasm by certain toxins. Many basic steps in the endocytic pathways have been elucidated, but some of the essential features of this process remain poorly understood. Several organelles have been identified as being involved in endocytic events. However, in many cases the characteristics and function of these organelles are uncertain. Few proteins have been identified which are highly enriched in the individual endocytic compartments, and virtually nothing is known of the molecular recognition signals which govern targeting of proteins to specific endocytic or membrane recycling compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aisen, P. and Listowsky, I., 1980, Iron transport and storage proteins, Ann. Rev. Biochem., 49: 367.

    Article  Google Scholar 

  • Dautry-Varsat, A., Ciechanover, A. and Lodish, H.F., 1983, pH and the recycling of transferrin during receptor-mediated endocytosis, Proc. Natl. Acad. Sci. USA, 80: 2258.

    Article  PubMed  CAS  Google Scholar 

  • DiPaola, M. and Maxfield, F.R., 1984, Conformational changes in the receptor for epidermal growth factor and asialoglycoproteins induced by the mildly acidic pH found in endocytic vesicles, J. Biol. Chem., 259: 9163.

    PubMed  CAS  Google Scholar 

  • Enns, C.A., Larrick, J.W., Suomalainen, H. Schroder, J. and Sussman, H.H., 1983, Co-migration and internalization of transferrin and its receptor on K562 cells. J. Cell Biol., 97: 579.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, J.L., Brown, M.S., Anderson, R.G.W., Russell, D.W. and Schneider, W.J., 1985, Receptor-mediated endocytosis: Concepts emerging from the LDL receptor system, Ann. Rev. Cell Biol., 1: 11.

    Article  Google Scholar 

  • Gonzalez-Noriega, A., Grubb, J.H., Talkad, V. and Sly, W.S., 1980, Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling, J. Cell Biol., 85: 839.

    Article  PubMed  CAS  Google Scholar 

  • Kielian, M.C. and Helenius, A., 1985, pH-induced alterations in the fusogenic spike protein of Semliki Forest virus, J. Cell Biol., 101:2284.

    Google Scholar 

  • Kielian, M.C., Marsh, M. and Helenius, A., 1986, Kinetics of endosome acidification detected by mutant and wild-type Semliki Forest virus, EMBO J., 5: 3103.

    PubMed  CAS  Google Scholar 

  • Klausner, R.D., van Renswoude, J., Ashwell, G., Kempf, C., Schechter, A.N., Dean, A. and Bridges, K.R., 1983, Receptor-mediated endocytosis of transferrin in K562 cells, J. Biol. Chem., 258: 4715.

    PubMed  CAS  Google Scholar 

  • Klausner, R.D., van Renswoude, J., Kempf, C., Rao, K., Bateman, J.L. and Robbins, A.R., 1984, Failure to release iron from transferrin in a Chinese hamster ovary cell mutant pleiotropically defective in endocytosis, J. Cell Biol., 98: 1098.

    Article  PubMed  CAS  Google Scholar 

  • Marsh, M., Bolzau, E. and Helenius, A., 1983, Penetration of Semliki Forest virus from acidic prelysosomal vacuoles, Cell, 32: 931.

    Article  PubMed  CAS  Google Scholar 

  • Maxfield, F.R., 1982, Weak bases and ionophores rapidly and reversibly raise the pH of endocytic vesicles in cultured mouse fibroblasts, J. Cell Biol., 95: 676.

    Article  PubMed  CAS  Google Scholar 

  • Maxfield, F.R., 1985, Acidification of endocytic vesicles and lysosomes, in: “Endocytosis,” I. Pastan and M.C. Willingham, eds., Plenum Press, New York, pp. 235–257.

    Google Scholar 

  • Mellman, I., Fuchs, R. and Helenius, A., 1986, Acidification of the endocytic and exocytic pathways, Ann. Rev. Biochem., 55: 663.

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma, S. and Poole, B., 1978, Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents, Proc. Natl. Acad. Sci. USA, 75: 3327.

    Article  PubMed  CAS  Google Scholar 

  • Olsnes, S. and Sandvig, K., 1983, Entry of toxic proteins into cells, in: “Receptor-mediated endocytosis: Receptors and Recognition,” P. Cuatrecasas and T.F. Roth, eds., Chapman and Hall, London, pp. 187–236.

    Chapter  Google Scholar 

  • Princiotto, J.V. and Zapolski, E.J., 1975, Difference between the two iron-binding sites of transferrin, Nature, 255: 87.

    Article  PubMed  CAS  Google Scholar 

  • Robbins, A.R., Peng, S.S. and Marshall, J.L., 1983, Mutant Chinese hamster ovary cells pleiotropically defective in receptor-mediated endocytosis, J. Cell Biol., 96: 1064.

    Article  PubMed  CAS  Google Scholar 

  • Robbins, A.R., Oliver, C., Bateman, J.L., Krag, S.S., Galloway, C.J. and Mellman, I., 1984, A single mutation in Chinese hamster ovary cells impairs both Golgi and endosomal function, J. Cell Biol., 99: 1296.

    Article  PubMed  CAS  Google Scholar 

  • Tycko, B. and Maxfield, F.R., 1982, Rapid acidification of endocytic vesicles containing a2-macroglobulin, Cell, 28: 643.

    Article  PubMed  CAS  Google Scholar 

  • Tycko, B., Keith, C.H. and Maxfield, F.R., 1983, Rapid acidification of endocytic vesicles containing asialoglycoprotein in cells of a human hepatoma line, J. Cell Biol., 97: 1762.

    Article  PubMed  CAS  Google Scholar 

  • White, J., Kartenbeck, J. and Helenius, A., 1980, Fusion of Semliki Forest Virus with the plasma membrane can be induced by low pH, J. Cell Biol., 87: 264.

    Article  PubMed  CAS  Google Scholar 

  • Yamashiro, D.J., Fluss, S.R. and Maxfield, F.R., 1983, Acidification of endocytic vesicles by an ATP-dependent proton pump, J. Cell Biol., 97: 929.

    Article  PubMed  CAS  Google Scholar 

  • Yamashiro, D.J. and Maxfield, F.R., 1984, Acidification of endocytic compartments and the intracellular pathways of ligands and receptors, J. Cell. Biochem., 26: 231.

    Article  PubMed  CAS  Google Scholar 

  • Yamashiro, D.J., Tycko, B., Fluss, S.R. and Maxfield, F.R., 1984, Segregation of transferrin to a mildly acidic (pH 6.5) para-Golgi compartment in the recycling pathway, Cell, 37: 789.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Maxfield, F.R., Yamashiro, D.J. (1987). Endosome Acidification and the Pathways of Receptor-Mediated Endocytosis. In: Atassi, M.Z. (eds) Immunobiology of Proteins and Peptides IV. Advances in Experimental Medicine and Biology, vol 225. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5442-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5442-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5444-4

  • Online ISBN: 978-1-4684-5442-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics