Skip to main content
  • 107 Accesses

Abstract

The foundation of modern brain theory1 is based on the epochal work of the physiologist Sherrington and the anatomist Cajal at the beginning of the twentieth century. Both established the modern view of neural networks as heterogeneous systems composed of single subunits, the neurons. They rejected the theory of Golgi and others that the brain is a continuous net of axons and neurons. Sherrington investigated the electrical firing of neurons and introduced the terminus “synapse” for the connection between the individual neurons. These ideas which drove away the animal ghosts of the continuum theory have been spectacularly confirmed half a century later by electron microscopy photographs of neurons and synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Palm, A. Aertsen, Brain Theory, Springer, Berlin-Heidelberg, New York (1986)

    Book  Google Scholar 

  2. H. Gardner, The Mind’s New Science, Basic Books, New York (1985).

    Google Scholar 

  3. C. von der Malsburg, Self-Organization of Orientation Sensitive Cells in the Striate Cortex, Kybernetik, 14, 85 (1973).

    Article  PubMed  Google Scholar 

  4. L.N. Cooper, Proceedings of the Nobel Symposium on Collective Properties of Physical Systems, ed. Lundqvist, Academic, New York, p. 252 (1973).

    Google Scholar 

  5. T. Kohonen, Self-Organization and Associative Memory, Springer, Berlin-Heidelberg, New York, p. 128 (1984).

    Google Scholar 

  6. J.J. Hopfield, Neural Networks and Physical Systems with Emergent Collective Computational Abilities, Proc. Natl. Acad. Sci. USA, 79, 2554 (1982).

    Article  PubMed  CAS  Google Scholar 

  7. J.J. Hopfield, Neural Networks for Computing, American Institute of Physics Publication, in press.

    Google Scholar 

  8. J. Buhmann, and K. Schulten, Associative Recognition and Storage in a Model Network of Physiological Neurons, Biol. Cybern., 54, 319 (1986).

    Article  PubMed  CAS  Google Scholar 

  9. C. von der Malsburg, The Correlation Theory of Brain Function, Internal Report 81/2, Dept. Neurobiologie, MPI f. Biophysikalische Chemie, Göttingen (1981).

    Google Scholar 

  10. M. Abeles, Local Cortical Circuits, Springer, Berlin-Heidelberg, New York (1982).

    Book  Google Scholar 

  11. T. Kohonen, Self-Organized Formation of Topologically Correct Feature Maps, Biol. Cybern., 43, 59 (1982).

    Article  Google Scholar 

  12. T. Kohonen, Analysis of a Simple Self-Organizing Process, Biol. Cybern., 44, 135 (1982).

    Article  Google Scholar 

  13. H. Ritter and K. Schulten, On the Stationary State of Kohonen’s Self-Organizing Sensory Mapping, Biol. Cybern., 54, 99 (1986).

    Article  Google Scholar 

  14. J. Fox, The Brain’s Dynamic Way of Keeping in Touch, Science, 225, 820 (1984).

    Article  PubMed  CAS  Google Scholar 

  15. J.H. Kaas, M.M. Merzenich and H.P. Killackey, The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals, Ann. Rev. Neuroscience, 6, 325 (1983).

    Article  CAS  Google Scholar 

  16. E.R. Kandel and J.H. Schwartz, Principles of Neural Science, Elsevier, New York (1985).

    Google Scholar 

  17. B.E. Stein, H.P. Clamann and S.J. Goldberg, Superior Colliculus: Control of Eye Movements in Neonatal Kittens, Nature, ??, ?? (1980).

    Google Scholar 

  18. H. Ritter and K. Schulten, Topology Conserving Mappings for Learning Motor Tasks, Proceedings of the 1st Conference on Neural Networks and Computing, Utah, in press (1986).

    Google Scholar 

  19. H. Ritter and K. Schulten, Planning a Dynamic Trajectory as Path Finding in Phase Space, Wopplot Proceedings, Munich, submitted 1986.

    Google Scholar 

  20. S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization by Simulated Annealing, Science, 220, 671 (1983).

    Article  PubMed  CAS  Google Scholar 

  21. S. Geman and D. Geman, IEEE Tran. Pattern Anal. Machine Intell., Vol. PAMI-6, 721 (1984).

    Article  Google Scholar 

  22. P. Kienker, T.J. Sejnowski, G.E. Hinton and L.E. Schuhmacher, Separating Figure from Ground with a Parallel Network, in press (1986).

    Google Scholar 

  23. D. Marr, Vision, Freeman (1982).

    Google Scholar 

  24. B. Julesz, Foundations of Cyclopean Perception, Univ. Chicago Press (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Buhmann, J., Divko, R., Ritter, H., Schulten, K. (1986). Physicists Explore Human and Artificial Intelligence. In: Clementi, E., Chin, S. (eds) Structure and Dynamics of Nucleic Acids, Proteins, and Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5308-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5308-9_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5310-2

  • Online ISBN: 978-1-4684-5308-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics