Skip to main content

Immune Cells and Bone Resorption

  • Chapter
Phosphate and Mineral Homeostasis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 208))

Abstract

The concept of interactions between cells of the immune system and bone in the control of bone turnover is far from new. The relationship between haematopoietic precursor cells and the osteoclast has long been recognised and studies on animals with congenital bone diseases such as osteopetrosis have identified defective components of the immune system as causing or contributing to the disease. For example, the op/op (osteopetrotic) rat exhibits thymic atrophy and the disease can be cured by either administration of normal bone marrow cells or by thymus transplant l. Several mutant rodents have been described in which the osteopetrosis can be cured by injection of bone marrow, spleen or thymocytes l. These studies suggest that a functioning immune system is necessary for the normal activity of the bone resorbing cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Milhaud and M.L. Labat, Thymus and osteopetrosis, Clin. Orthop. Rel. Res. 135: 260–271 (1978).

    Google Scholar 

  2. J.E. Horton, L.G. Raisz and H.A. Simmons, Bone resorbing activity in supernatant fluid from cultures of human peripheral blood leukocytes. Science 177: 793–795 (1972).

    Article  Google Scholar 

  3. D.A. Fishman and E.D. Hay, Origin of osteoclasts from mononuclear leukocytes in regenerating newt limbs, Anat. Record. 143: 329–334 (1962).

    Article  Google Scholar 

  4. D.G. Walker, Congenital osteopetrosis in mice cured by parabiotic union with normal siblings, Endocrinol. 91: 916–920 (1972).

    Article  Google Scholar 

  5. A.J. Khan and D.J. Simmons, Investigation of cell lineage in bone using chimera of chick and quail embyronic tissue, Nature 258: 323–327 (1975).

    Google Scholar 

  6. P. Ash, J.F. Loutit and K.M.S. Townsend, Osteoclasts derived from haemopoietic stem cells, Nature 283: 669–670 (1980).

    Article  Google Scholar 

  7. S.C. Marks and D.G. Walker, The haematogenous origin of osteoclasts: experimental evidence from osteopetrotic (microphthalmic) mice treated with spleen cells from beige mouse donors, Am. J. Anat. 161: 1–10 (1981).

    Article  Google Scholar 

  8. E. Burger, J.W.M. Van der Meer, J.S. Van Der Geuil, J.C. Gribnau, C.W. Thesingh and R. Van Furth, In vitro formation of osteoclasts from long term culture of bone marrow mononuclear phagocytes, J. Exp. Med. 156:1604–1614 (1982).

    Article  Google Scholar 

  9. M.A. Horton, E.F. Rimmer, D. Lewis, J.A.S. Pringle, K. Fuller and T.J. Chambers, Cell surface characterisation of the human osteoclast: phenotypic relationship to other bone marrow-derived cell types, J. Pathol. 144: 282–294 (1984).

    Article  Google Scholar 

  10. M.A. Horton, D. Louis, K. McNulty, J.A.S. Pringle and T.J. Chambers, Characterisation of monoclonal antibodies specific for human osteoclasts, Calcif. Tissue Int.(in press).

    Google Scholar 

  11. M.J. Oursler, L.V. Bell, B. Clevinger and P. Osdoby, Identification of osteoclast-specific monoclonal antibodies, J. Cell Biol. 100: 1592–1600 (1985).

    Article  Google Scholar 

  12. R. Baron, L. Neff, D. Ouvard and P. Courtoy, Acidification and bone resorption: immunocytochemical localisation of a lysosomal membrane protein at the ruffled border of osteoclasts, Calcif. Tissue Int. 36 (4) (1984).

    Google Scholar 

  13. A.Z. Zambonin-Zallone, A. Teti and M.V. Primavera, Isolated osteoclast in primary culture: first observations on structure and survival in tissue culture media, Anat. Embryol. 165: 405–413 (1982).

    Article  Google Scholar 

  14. P. Osdoby, M.C. Martini and A.I. Caplan, Isolated osteoclasts and their presumed progenitor cells, the monocyte, in culture, J. Exp. Zool., 224: 331–344 (1982).

    Article  Google Scholar 

  15. T.J. Helfey and P.H. Stern, Isolation of osteoclasts from fetal rat long bones, Calcif. Tissue Int. 34: 480–487 (1982).

    Article  Google Scholar 

  16. T.J. Chambers and A. Moore, The sensitivity of isolated osteoclasts to morphological transformation by calcitonin, J. Clin. Enocrinol. Metab. 57: 819–824 (1983).

    Article  Google Scholar 

  17. N.G. Testa, T.D. Allen, L.G. Lathja, D. Onions and O. Jarrett, Generation of osteoclasts in vitro. J. Cell Science 47: 127–137 (1981).

    Google Scholar 

  18. K.J. Ibbotson, G.D. Roodman, L.M. McManus and G.R. Mundy, Identification and characterisation of osteoclast-like cells and their progenitors in cultures of feline marrow mononuclear cells, J. Cell Bio1. 99: 471–480 (1984).

    Article  Google Scholar 

  19. G.D. Roodman, K.J. Ibbotson, B.R. MacDonald, T.J. Kuehl and G.R. Mundy, 1,25(OH)2 vitamin D3 causes formation of multinucleate cells with several osteoclast characteristics in cultures of primate marrow, Proc. Natl. Acad. Sci USA (in press).

    Google Scholar 

  20. B.R. MacDonald, N. Takahashi, L. McManus, G.R. Mundy and G.D. Roodman, Formation of multinucleated cells with osteoclastic characteristics in human long-term marrow cultures is controlled by calcium regulating hormones, Manuscript submitted.

    Google Scholar 

  21. G.R. Mundy and L.G. Raisz, Big and little forms of osteoclast activating factor, J. Clin. Invest. 60: 122–128 (1977).

    Article  Google Scholar 

  22. R.A. Luben, M C-Y Chen, D.M. Rosen and M.A. Mohler, Effects of osteoclast activating factor from human lymphocytes on cyclic AMP concentrations in isolated mouse bone and bone cells, Calcif. Tissue Int. 28: 32–32 (1979).

    Article  Google Scholar 

  23. R.S. Bockman and M. Repo, Lymphokine-mediated bone resorption requires endogenous prostaglandin synthesis, J. Exp. Med. 154: 529–534 (1981).

    Article  Google Scholar 

  24. T. Yoneda and G.R. Mundy, Prostaglandins are necessary for OAF production by activated peripheral blood leukocytes, J. Exp. Med. 149: 279–283 (1979).

    Article  Google Scholar 

  25. R.G. Josse, T.M. Murray, G.R. Mundy, D. Jez and J.N.M. Heersche, Observations on the mechanism of bone resorption induced by multiple myeloma culture fluids and partially-purified OAF, J. Clin. Invest. 67: 1472–1481 (1981).

    Article  Google Scholar 

  26. P. Chen, C. Trummel, J. Horton, T.J. Barker and T.J. Oppenheim, Production of osteoclast-activating factor by human peripheral blood rosetting and non-rosetting lymphocytes, Eur. J. Immunol. 6: 723–736 (1976).

    Article  Google Scholar 

  27. M. Horowitz, A. Vignery, R.K. Gershon and R. Baron, Thymus-derived lymphocytes and their interactions with macrophages are required for the production of osteoclast-activating factor in the mouse, Proc. Natl. Acad. Sci. USA 81: 2181–2185 (1984).

    Article  Google Scholar 

  28. M. Gowen, M.C. Meikle and J.J. Reynolds, Stimulation of bone resorption in vitro by a non-prostanoid factor released by human monocytes in culture, Biochim. Biophys. Acta. 762: 471–474 (1983).

    Article  Google Scholar 

  29. B. Rutherford and C.L. Trummel, Monocyte-mediated bone resorption involves release of non-dialysable substances in addition to prostaglandin. J. Reticuloendothelial Soc. 33: 175–184 (1983).

    Google Scholar 

  30. M. Gowen, D.D. Wood, E.J. Ihrie, M.K.B. McGuire and R.G.G. Russell, An interleukin-1-like factor stimulates bone resorption in vitro, Nature 306: 378–380 (1983).

    Article  Google Scholar 

  31. P.T. Lomedico, U. Gubler, C.P. Hellmann, M. Pukovich, J.G. Giri, Y-C.E. Pan, K. Collier, R. Semionow, A.O. Chiva and S.B. Mizel, Cloning and expression of murine interleukin 1 cDNA in Escherichia coli, Nature 312: 458–462 (1984).

    Article  Google Scholar 

  32. M. Gowen and G.R. Mundy, Actions of recombinant interleukin 1, interleukin 2 and interferon gamma on bone resorption in vitro, Manuscript submitted.

    Google Scholar 

  33. M. Gowen, D.D. Wood and R.G.G. Russell, Stimulation of the proliferation of human bone cells in vitro by human monocyte products with interleukin 1 activity, J. Clin. Invest. 75: 1223–1228 (1985).

    Article  Google Scholar 

  34. B.M. Thomson and T.J. Chambers, Osteoblastic cells are induced by interleukin 1 (IL-l) to stimulate osteoclastic bone resorption, Calcif. Tissue Int. (in press).

    Google Scholar 

  35. P.P. Stashenko and F.F. Dewhirst, Purification of osteoclast-activating factor, Calcif. Tissue Int.(in press).

    Google Scholar 

  36. A.H. Tashjian, E.L. Hohman, H.N. Antoniades and L. Levine, Platelet-derived growth factor stimulates bone resorption via a prostaglandin-mediated mechanism, Endocrinol. 111: 118–123 (1982).

    Article  Google Scholar 

  37. A.H. Tashjian, E.F. Voelkel, M. Lazzaro, F.S. Singer, A.B. Roberts, R. Derynck, M.E. Winkler and L. Levine, and human transforming growth factors stimulate prostaglandin production and bone resorption in cultured mouse calvaria, Proc. Natl. Acad. Sci. USA 82: 4535–4538 (1985).

    Article  Google Scholar 

  38. Bertolini, G.E., Nedwin, T.S., Bringman and G.R. Mundy, Recombinant human cytokines with tumour necrosis activity stimulate osteoclastic bone resorption in vitro, Manuscript submitted.

    Google Scholar 

  39. D.H. Pluznik and L. Sachs, The induction of clones of normal mast cells by a substance from conditioned medium, Exp. Cell. Res. 43: 553–563 (1966).

    Article  Google Scholar 

  40. T.R. Bradley and D. Metcalf, The growth of mouse bone marrow cells in vitro, Aust. J. Exp. Biol. Med. Sci. 44: 287–300 (1966).

    Article  Google Scholar 

  41. E.R. Stanley, Colony stimulating factors. In: The Lymphokines: biochemistry and biological activity (W.E. Stewart and J.W. Hodder eds). Humana Press, New Jersey, pp 102–132 (1981).

    Google Scholar 

  42. A.W. Burgess and D. Metcalf, The nature of granulocyte macrophage colony-stimulating factors, Blood 56: 947–958 (1980).

    Google Scholar 

  43. B.R. MacDonald, G.R. Mundy, S. Clark, E.A. Wong, T.J. Kuehl, E.R. Stanley and G.D. Roodman, Human recombinant CSF-GM and highly purified CSF-1 stimulate the formation of multinucleated cells with osteoclast characteristics in long-term bone marrow cultures. Manuscript submitted.

    Google Scholar 

  44. W. Wiktor-Jedrzejzcak, A. Ahmed, C. Szczylik and R.R. Skelly, Hematological characterisation of congenital osteopetrosis in the op/op mouse, J. Exp. Med. 156: 1516–1527 (1982).

    Article  Google Scholar 

  45. P.W. Gray and D.V. Goeddel, Cloning and expression of murine immune interferon cDNA, Proc. Natl. Acad. Sci. USA 80: 5842–5846 (1983).

    Article  Google Scholar 

  46. M.Gowen, G.E. Nedwin and G.R. Mundy, Preferential inhibition of cytokine-stimulated bone resorption by recombinant interferon gamma, Manuscript submitted.

    Google Scholar 

  47. R.L. Jilka and J.W. Hamilton, Inhibition of parathormone-stimulated bone resorption by type I interferon, Biochem. Biophys. Res. Commun. 120: 553–558 (1984).

    Article  Google Scholar 

  48. M. Takei, K. Takeda and K. Konno, The role of interferon in induction of differentiation of human myeloid leukemia cell lines ML-1 and HL-60, Biochem. Biophys. Res. Commun. 124: 100–105 (1984).

    Article  Google Scholar 

  49. C. Minkin, L. Blackman, J. Newbrey, S. Potress, R. Posek and M. Walling, Effects of parathyroid hormone and calcitonin on adenylate cyclase in murine mononuclear phagocytes, Biochem. Biophys. Res. Commun. 76: 875–881 (1977).

    Article  Google Scholar 

  50. H. Tanaka, E. Abe, C. Miyaura, Y. Shira and T. Suda, 1,25(OH)2D3 induces differentiation of human promyelocytic leukemia cells into monocyte macrophages but not into granulocytes, Biochem. Biophys. Res. Commun. 117: 86–93 (1983).

    Article  Google Scholar 

  51. E.P. Amento, A.K. Bhalla, J.T. Kurnick, R.L. Kradin, T.L. Clemens, S.A. Holick, M.F. Holick and S.M. Krane, 1,25-dihydroxyvitamin D3 induces maturation of the human monocyte cell line U937, and in association with a factor from human T lymphocytes augments production of the monokine, mononuclear cell factor, J. Clin. Invest. 73: 731–739 (1984).

    Article  Google Scholar 

  52. G.A. Rodan and T.J. Martin, Role of osteoblasts in hormonal control of bone resorption–a hypothesis, Calcif. Tiss. Int. 33: 349–352 (1981).

    Article  Google Scholar 

  53. H.M. Perry, J.C. Chappel, E. Bellorin-Font, K.J. Martin and S.L. Teitelbaum, Parathyroid hormone receptors on circulating human mononuclear leukocytes, J. Biol. Chem. 259: 5531–5535 (1984).

    Google Scholar 

  54. I. Yamamoto, J.T. Potts and G.V. Segre, Circulating bovine lymphocytes contain receptors for parathyroid hormone, J. Clin. Invest. 71: 404–408 (1983).

    Article  Google Scholar 

  55. S.J. Marx, G.D. Aurbach, J.R. Gavin, D.W. Buell, Calcitonin receptors on cultured human lymphocytes, J. Biol. Chem. 149:6812–6816 (1974)

    Google Scholar 

  56. W.F.C. Rigby, T. Stacy and M.W. Faviger, Inhibition of T lymphocyte mitogenesis by 1,25 dihydroxyvitamin D3, J. Clin. Invest. 74: 1451–1455 (1984).

    Article  Google Scholar 

  57. R. Baron, A. Vignery and M. Horowitz, Lymphocytes, macrophages and the regulation of bone remodeling. In: Bone and Mineral Research, Annual 2. (Peck WA ed) Elsevier Science Publishers pp 175–246 (1983).

    Google Scholar 

  58. G. Groenewegen, W.A. Buurman and C.J. Van der Linden, Lymphokine dependence of in vivo expression of MHC class II antigens by endothelium, Nature 326: 361–363 (1985).

    Article  Google Scholar 

  59. E.P. Amento, A.K. Bhan, K.G. McCullagh and S.M. Krane, Influences of gamma interferon on synovial fibroblast-like cells, J. Clin. Invest, 76: 837–848 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Gowen, M., MacDonald, B.R., Hughes, D.E., Skjodt, H., Russell, R.G.G. (1986). Immune Cells and Bone Resorption. In: Massry, S.G., Olmer, M., Ritz, E. (eds) Phosphate and Mineral Homeostasis. Advances in Experimental Medicine and Biology, vol 208. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5206-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5206-8_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5208-2

  • Online ISBN: 978-1-4684-5206-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics