Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 197))

Abstract

Active forms of oxygen are becoming increasingly implicated in the etiology of numerous disease states and the toxicities of various drugs and chemicals. Among the former are the initiation and promotion of tumors (Petkau, 1980) and rheumatoid arthritis (Rowley et al., 1984), while the latter includes toxicities such as that associated with anthracycline antibiotics (Goodman and Hochstein, 1977), and paraquat (Bus et al., 1974). The generation of active oxygen species during normal cellular metabolism such as prostaglandin and leukotriene biosynthesis (Kalyanaraman and Sivarajah, 1984) or by stimulated polymorphonuclear leukocytes or macrophages (Babior and Peters, 1981) is now widely recognized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aisen, P., and Listowsky, I., 1980, Iron transport and storage proteins, Ann. Rev. Biochem., 49: 357.

    Article  PubMed  CAS  Google Scholar 

  • Babior, B.M., and Peters, W.A., 1981, The 027 producing enzyme of human neutrophils. Further properties, J. Biol. Chem., 256: 2321.

    PubMed  CAS  Google Scholar 

  • Bartlett, G.R., 1976, Phosphate compounds in rat erythrocytes and reticulocytes, Biochem. Biophys. Res. Comm., 70: 1055.

    Article  CAS  Google Scholar 

  • Bucher, J.R., Tien, M., and Aust, S.D., 1983a, The requirement for ferric in the initiation of lipid peroxidation by chelated ferrous iron, Biochem. Biophys. Res. Comm., 111: 777.

    Article  PubMed  CAS  Google Scholar 

  • Bucher, J.R., Tien, M., Morehouse, L.A., and Aust, S.D., 1983b, Infuence of superoxide dismutase and catalase on strong oxidant formation during autoxidation of ferrous chelates, in: “Oxy Radicals and Their Scavenger Systems. Volume I: Molecular Aspects”, G. Cohen and R.A. Greenwald, eds., Elsevier Science Publishing Co., New York.

    Google Scholar 

  • Bus, J.S., Aust, S.D., and Gibson, J.E., 1974, Superoxide-and Singlet oxygen-catalyzed lipid peroxidation as a possible mechanism for paraquat (methyl viologen) toxicty, Biochem. Biophys. Res. Comm., 58: 749.

    CAS  Google Scholar 

  • Freeman, B.A., and Crapo, J.D., 1982, Biology of disease. Free radicals and tissue injury, Lab. Invest., 47: 412.

    PubMed  CAS  Google Scholar 

  • Fridovich, I., 1983, Superoxide radical: an endogenous toxicant, Ann. Rev. Pharmacol. Toxicol., 23: 239.

    Article  CAS  Google Scholar 

  • Goodman, J., and Hochstein, P., 1977, Generation of free radicals and lipid peroxidation by redox cycling of adriamycin and daunomycin, Biochem. Biophys. Res. Comm., 77: 797.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, P.M., 1977, Ferritin: An iron storage molecule, Sem. Hematol., 14: 55.

    CAS  Google Scholar 

  • Hochstein, P., 1981, Nucleotide-iron complexes and lipid peroxidation: mechanisms and biological significance, Israel J. Chem., 21:52.

    CAS  Google Scholar 

  • Jacobs, A., 1977, Low molecular weight intracellular iron transport compounds, Blood, 50: 433.

    PubMed  CAS  Google Scholar 

  • Jones, T., Spencer, R., and Walsh, C., 1978, Mechanism and kinetics of iron release from ferritin by dihydroflavins and dihydroflavin analogues, Biochemistry, 17: 4011.

    Article  PubMed  CAS  Google Scholar 

  • Kalyanaraman, B., and Sivarajah, K., 1984, The electron spin resonance study of free radicals formed during the arachidonic acid cascade and cooxidation of xenobiotics by prostaglandin synthase, in: “Free Radicals in Biology, Volume 6”, W.A. Pryor, ed., Academic Press, New York.

    Google Scholar 

  • McCord, J.M., and Day, E.D., 1978, Superoxide-dependent production of hydroxyl radical catalyzed by the iron-EDTA complex, FEBS Lett., 86: 139.

    Article  Google Scholar 

  • Petkau, A., 1980, Radiation carcinogenesis from a membrane perspective, Acta Physiol. Scand., Supplemental, 492: 81.

    CAS  Google Scholar 

  • Rowley, D.A., and Halliwell, B., 1982, Superoxide-dependent formation of of hydroxyl radicals in the presence of thiol compounds, FEBS Lett., 138: 33.

    Article  PubMed  CAS  Google Scholar 

  • Rowley, D., Gutteridge, J.M.C., Blake, D., Farr, M., and Halliwell, B., 1984, Lipid peroxidation in rheumatoid arthritis: thiobarbituric acid-reactive material and catalytic iron salts in synovial fluid from rheumatoid patients, Clin. Sci., 66: 691.

    PubMed  CAS  Google Scholar 

  • Saito, M., Thomas, C.E., and Aust, S.D., In Press, Paraquat and ferritin-dependent lipid peroxidation, J. Free Rad. Biol. Med.

    Google Scholar 

  • Thomas, C.E., Morehouse, L.A., and Aust, S.D., 1985, Ferritin and superoxide-dependent lipid peroxidation, J. Biol. Chem., 260: 3275.

    PubMed  CAS  Google Scholar 

  • Tien, M., Svingen, B.A., and Aust, S.D., 1981, Initiation of lipid peroxidation by perferryl complexes, in: “Oxygen and Oxy-Radicals in Chemistry and Biology”, M.A.J. Rodgers and E.L. Powers, eds., Academic Press, New York.

    Google Scholar 

  • Tien, M., Svingen, B.A., and Aust, S.D., 1982a, An investigation into the role of hydroxyl radical in xanthine oxidase-dependent lipid peroxidation, Arch. Biochem. Biophys., 216: 142.

    Article  PubMed  CAS  Google Scholar 

  • Tien, M., Bucher, J.R., and Aust, S.D., 1982b, Thiol-dependent lipid peroxidation, Biochem. Biophys. Res. Comm., 107: 279.

    CAS  Google Scholar 

  • Weiss, J., 1953, The autoxidation of ferrous ions in aqueous solution, Experientia, 9: 61.

    Article  PubMed  CAS  Google Scholar 

  • Winterbourn, C.C., 1979, Comparison of superoxide with other reducing agents in the biological production of hydroxyl radicals, Biochem. J., 182: 625.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Aust, S.D., Thomas, C.E., Morehouse, L.A., Saito, M., Bucher, J.R. (1986). Active Oxygen and Toxicity. In: Kocsis, J.J., Jollow, D.J., Witmer, C.M., Nelson, J.O., Snyder, R. (eds) Biological Reactive Intermediates III. Advances in Experimental Medicine and Biology, vol 197. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5134-4_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5134-4_49

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5136-8

  • Online ISBN: 978-1-4684-5134-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics