Skip to main content

Effects of Narcotic Analgesics on Brain Function

  • Chapter
  • 40 Accesses

Abstract

Drugs which produce dependence have one characteristic in common: in effective doses, they induce alteration in behavior. This characteristic, however, does not define addictive drugs, since other drugs modify behavior without inducing addiction. The behavioral responses to addictive drugs do indicate the central nervous system as the target tissue, and nervous function as the site of drug intervention, during the development of dependence to chronic use of opiates or other drugs which produce dependence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. WHO Expert Committee on Drug Dependence, Drug dependence: Its significance and characteristics, Bull. World Health Org 37: (1965).

    Google Scholar 

  2. N. B. Eddy, The relation of chemical structure to analgesic action, J. Am. Pharm. Ass 39: 245–251 (1950).

    Article  Google Scholar 

  3. A. F. Casy, The structure of narcotic analgesic drugs, in “Narcotic Drugs: Biochemical Pharmacology” (D. H. Clouet, ed.) Plenum Press, New York (1971).

    Google Scholar 

  4. P. S. Portoghese, Relationship between stereostructure and pharmacological activities, Ann. Rev. Pharmacol 10:51–76 (1970).

    Article  Google Scholar 

  5. S. Archer and L. S. Harris, Narcotic antagonists, Progr. Drug Res 8:261–269 (1965).

    Google Scholar 

  6. L. S. Harris, Structure-activity relationships, in “Narcotic Drugs: Biochemical Pharmacology” (D. H. Clouet, ed.) Plenum Press, New York (1971).

    Google Scholar 

  7. A. H. Beckett and A. F. Casy, Synthetic analgesics: Stereochemical considerations, J. Pharm. Pharmacol 6:986–1001 (1954).

    Article  Google Scholar 

  8. J. W. Lewis, K. W. Bentley, and A. Cowan, Narcotic analgesics and antagonists, Ann. Rev. Pharmacol 11:241–270(1971).

    Article  Google Scholar 

  9. A. Wikler, Sites and mechanisms of action of morphine and related drugs in the central nervous system, Pharmacol. Rev 2:435–506 (1950).

    Google Scholar 

  10. J. Florez, L. E. McCarthy, and H. L. Borison, A comparative study in the cat of the respiratory effects of morphine, J. Pharmacol. Exptl. Therap 163:448–455 (1968).

    Google Scholar 

  11. H. L. Borison and S. C. Wang, Physiology and pharmacology of vomiting, Pharmacol. Rev 5:193–225 (1953).

    Google Scholar 

  12. C. F. Schmidt and A. E. Livingston, The action of morphine in mammalian circulation, J. Pharmacol. Exptl. Therap 47:411–441 (1933).

    Google Scholar 

  13. R. George, The effects of narcotic analgesics on the hypothalamus: Pituitary gland, in “Narcotic Drugs: Biochemical Pharmacology” (D. H. Clouet, ed.) Plenum Press, New York (1971).

    Google Scholar 

  14. F. D. McCrea, G. S. Eadie, and J. E. Morgan, The mechanism of morphine miosis, J. Pharmacol. Exptl. Therap 74:239–246 (1942).

    Google Scholar 

  15. E. Mills and S. C. Wang, Liberation of antidiuretic hormone: Pharmacologie blockade of ascending pathways, Am. J. Physiol 207:1405–1410 (1964).

    Google Scholar 

  16. C. M. Brooks, R. A. Goodwin, and H. N. Willard, The effect of various brain lesions on morphine-induced hyperglycemia and excitement in the cat, Am. J. Physiol 133:226–227 (1941).

    Google Scholar 

  17. K. E. Moore, L. E. McCarthy, and H. L. Borison, Blood glucose and brain catecholamine levels in the cat following the injection of morphine into the cerebrospinal fluid, J. Pharmacol. Exptl. Therap 148:169–175 (1965).

    Google Scholar 

  18. H. L. Borison, Site of action of narcotics in the nervous system, in “Narcotic Drugs: Biochemical Pharmacology” (D. H. Clouet, ed.) Plenum Press, New York (1971).

    Google Scholar 

  19. T. Thompson and C. R. Schuster, Morphine self-administration, food-reinforced and avoidance behaviors in rhesus monkey, Psychopharmacologia 5:87–94 (1964).

    Article  Google Scholar 

  20. J. R. Weeks, Experimental morphine addiction: Method for automatic intravenous injection in unrestrained rats, Science 138:143–144 (1962).

    Article  Google Scholar 

  21. C. R. Schuster and T. Thompson, Self-administration of and behavioral dependence on drugs, Ann. Rev. Pharmacol 9:483–502 (1969).

    Article  Google Scholar 

  22. J. R. Weeks and R. J. Collins, Factors affecting voluntary morphine intake in self-maintained addicted rats, Psychopharmacologia 6:267–279 (1964).

    Article  Google Scholar 

  23. T. Thompson and W. Ostlund, Susceptibility to readdiction as a function of the addiction and withdrawal environment, J. Comp. Physiol. Psychol 59:388–392 (1965).

    Article  Google Scholar 

  24. T. Thompson and R. Pickens, Drug self-administration and conditioning, in “Scientific Basis of Drug Dependence” (H. Steinberg, ed.) J. and A. Churchill, ondon (1969).

    Google Scholar 

  25. S. J. Mulé, Physiological disposition of narcotic agonists and antagonists, in “Narcotic Drugs: Biochemical Pharmacology” (D. H. Clouet, ed.) Plenum Press, New York (1971).

    Google Scholar 

  26. A. Herz and H. J. Teschemacher, activities and sites of antinociceptive action of morphine-like analgesics, in “Advances in Drug Research” (N. J. Harper and A. B. Simmonds, eds.) Vol. 6, Academic Press, New York (1971).

    Google Scholar 

  27. S. J. Mulé, The relationship of the disposition and metabolism of morphine in the CNS to tolerance, in “Scientific Basis of Drug Dependence” (H. Steinberg, ed.) J. and A. Churchill, London (1969).

    Google Scholar 

  28. H. Kaneto and L. B. Mellett, The intracellular binding of N-methyl C14-morphine in brain tissue of the rat, The Pharmacologist 2:98 (1960).

    Google Scholar 

  29. D. Van Praag and E. J. Simon, Studies on the intracellular distribution and tissue binding of dihydromorphine-H3 in the rat, Proc. Soc. Exptl. Biol. Med 122:6–16 (1966).

    Google Scholar 

  30. S. J. Mulé, C. M. Redman, and J. W. Flesher, Intracellular disposition of H3-morphine in the brain and liver of non-tolerant and tolerant guinea-pigs, J. Pharmacol. Exptl. Therap 157:459–471 (1967).

    Google Scholar 

  31. D. H. Clouet and N. Williams, The binding of narcotic analgesics in synaptosomal and other particulate fractions, The Pharmacologist 13:676 (1971).

    Google Scholar 

  32. S. J. Mulé, G. A. Casella, and D. H. Clouet, Localization of levo-H3-methadone in synaptic membranes of rat brain, reported to the Committee on Problems of Drug Dependence (Natl. Acad. Sci-Natl. Research Council) pp. 322-339 (1972).

    Google Scholar 

  33. E. L. Way, Brain uptake of morphine: Pharmacologic implications, Fed. Proc 26:1115–1118(1967).

    Google Scholar 

  34. W. L. Way, E. C. Costley, and E. L. Way, Respiratory sensitivity of the newborn infant to meperidine and morphine, Clin. Pharmacol. Therap 6:454–461 (1965).

    Google Scholar 

  35. A. H. Conney and J. J. Burns, Factors influencing drug metabolism, Advan. Pharmacol 1:31–58 (1962).

    Article  Google Scholar 

  36. C. C. Hug, Transport of narcotic analgesics by choroid plexus and kidney tissue, Biochem. Pharmacol 16:345–359 (1967).

    Article  Google Scholar 

  37. C. C. Hug, Transport of narcotic analgesics in the central nervous system, in “Narcotic Drugs: Biochemical Pharmacology” (D. H. Clouet, ed.) Plenum Press, New York (1971).

    Google Scholar 

  38. G. F. Blane and H. E. Dobbs, Distribution of H3-labelled etorphine (M99) and dihydromorphine in pregnant rats at term, Brit. J. Pharmacol 30:166–172 (1967).

    Google Scholar 

  39. E. L. Way and T. K. Adler, The biological disposition of morphine and its surrogates, Bull. World Health Org 25-27:3–117 (1962).

    Google Scholar 

  40. E. L. Way and T. K. Adler, The pharmacologic implications of the fate of morphine and its surrogates, Pharmacol. Rev 12:383–446 (1960).

    Google Scholar 

  41. J. R. Gillette, Factors affecting drug metabolism, Ann. N. Y. Acad. Sci 179:43–67 (1971).

    Article  Google Scholar 

  42. K. C. Liebman, A. G. Hildebrandt, and R. W. Estabrook, Spectrophotometric studies of interactions between various substrates in their binding to microsomal cytochrome P-450, Biochem. Biophys. Res. Commun 36:789–794 (1969).

    Article  Google Scholar 

  43. A. H. Conney, Enzyme induction and drug toxicity, in “Drugs and Enzymes” (B. B. Brodie and J. R. Gillette, eds.) Pergamon Press, New York (1965).

    Google Scholar 

  44. D. H. Clouet and M. Ratner, The effect of altering liver microsomal iV-demethylase activity on the development of tolerance to morphine in rats, J. Pharmacol. Exptl. Therap 144:362–372 (1964).

    Google Scholar 

  45. J. B. Schenkman, H. Remmer, and R. W. Estabrook, Spectral studies of drug interaction with hepatic microsomal cytochrome, Molec. Pharmacol 3:113–123 (1967).

    Google Scholar 

  46. J. T. Scrafani and D. H. Clouet, Biotransformations of narcotic analgesics, in “Narcotic Drugs: Biochemical Pharmacology” (D. H. Clouet, ed.) Plenum Press, New York: (1971).

    Google Scholar 

  47. J. M. Fujimoto, Sites of action of narcotic analgesics in the kidney, in “Narcotic Drugs: Biochemical Pharmacology” (D. H. Clouet, ed.) Plenum Press, New York (1971).

    Google Scholar 

  48. R. B. Nelson and H. W. Elliott, A comparison of some central effects of morphine, morphinone and thebaine in rats and mice, J. Pharmacol. Exptl. Therap 155:516–520 (1967).

    Google Scholar 

  49. A. E. Takemori, Intermediary metabolism: Effects by narcotic drugs, in “Narcotic Drugs: Biochemical Pharmacology” (D. H. Clouet, ed.) Plenum Press, New York (1971).

    Google Scholar 

  50. A. E. Takemori, Cellular adaptation to morphine in rats, Science 133:1018–1019 (1961).

    Article  Google Scholar 

  51. H. Mcllwain, Actions of haloperidol, meperidine and related compounds on the excitability and ion content of isolated cerebral tissues, Biochem. Pharmacol 13:523–529 (1964).

    Article  Google Scholar 

  52. A. E. Takemori, Effect of central depressant agents on cerebral G-6-P dehydrogenase activity of rats, J. Neurochem 12:407–415 (1965).

    Article  Google Scholar 

  53. P. W. Dodge and A. E. Takemori, Changes in rat cerebral glycolytic intermediates in vivo after treatment with morphine, nalorphine or pentobarbital, Biochem. Pharmacol 18: 1873–1882 (1969).

    Article  Google Scholar 

  54. H. S. Bachelard and J. R. Lindsay, Effects of neurotropic drugs on glucose metabolism in rat brain in vivo, Biochem. Pharmacol 15:1053–1058 (1966).

    Article  Google Scholar 

  55. D. H. Clouet and A. Neidle, The effect of the administration of morphine on the transport and metabolism of intracisternally administered leucine in the rat, J. Neurochem 17: 1069–1074 (1970).

    Article  Google Scholar 

  56. S. Berl and D. P. Purpura, Regional development of glutamic acid compartmentation in immature brain, J. Neurochem 13:293–304 (1966).

    Article  Google Scholar 

  57. R. M. O’Neal and R. E. Koeppe, Precursors in vivo of glutamate, aspartate and their derivatives of rat brain, J. Neurochem 13:835–847 (1966).

    Article  Google Scholar 

  58. R. Balazs, Y. Machiyama, B. J. Hammond, T. Julian, and D. Richter, The operation of the gamma-aminobutyrate bypass of the tricarboxylic acid cycle in brain tissue in vitro, Biochem. J 116:445–467 (1970).

    Google Scholar 

  59. D. H. Clouet and M. Ratner, The effect of morphine administration on the incorporation of C14-leucine into the protein of rat brain in vivo, Brain Res 4:33–43 (1967).

    Article  Google Scholar 

  60. D. H. Clouet, The effect of morphine administration on protein and RNA synthesis in rat brain, in “Drug Abuse: Social and Psychopharmacological Aspects” (J. O. Cole and J. R. Wittenborn, eds.) Charles C. Thomas, Springfield, Ill. (1969).

    Google Scholar 

  61. D. H. Clouet, The effects of drugs upon protein synthesis, in “Protein Metabolism in the Nervous System” (A. Lajtha, ed.) Plenum Press, New York (1970).

    Google Scholar 

  62. E. J. Simon and D. Van Praag, Inhibition of RNA synthesis in E. coli by levorphanol, Proc. Nad. Acad. Sci 51:877–883 (1964).

    Article  Google Scholar 

  63. W. D. Noteboom and G. C. Mueller, Inhibition of cell growth and the synthesis of RNA and protein in Hela cells by morphinans and related compounds, Molec. Pharmacol 2: 534–542 (1966).

    Google Scholar 

  64. R. Greene and B. Magasanik, The mode of action of levallorphan as an inhibitor of cell growth, Molec. Pharmacol 3:453–472. (1967).

    Google Scholar 

  65. T. Rossman, F. F. Becker, and J. Vilchek, An investigation into the mechanism of cytotoxicity of levorphanol, Molec. Pharmacol 7:480–483 (1971).

    Google Scholar 

  66. P. L. Boquet, M. A. Devynck, H. Aurelle, and P. Fromageot, On the bacterialcidal action of levallorphan: Irreversible alterations of the plasma membrane, Europ. J. Biochem 21: 536–541 (1971).

    Article  Google Scholar 

  67. E. J. Simon, Inhibition of the synthesis of RNA in E. coli by the narcotic drug levorphanol, Nature 198:794–795 (1963).

    Article  Google Scholar 

  68. G. Corssen and I. A. Skora, “Addiction” reactions in cultural human cells, J. Am. Med. Ass 187:328–332 (1964).

    Article  Google Scholar 

  69. K. Sanjo, Experimentelle Untersuchungen über die Gewöhnung der Irisepithelkulturen an Morphin, Folia Pharmacol. Jap 17:219–229 (1934).

    Google Scholar 

  70. D. H. Clouet and M. Ratner, Catecholamine biosynthesis in brains of rats treated with morphine, Science 168:854–856 (1970).

    Article  Google Scholar 

  71. D. H. Clouet, The effects of narcotic analgesics on protein and RNA metabolism, in “Narcotic Drugs: Biochemical Pharmacology” (D. H. Clouet, ed.) Plenum Press, New York (1971).

    Google Scholar 

  72. M. Cohen, A. S. Keats, W. Krivoy, and G. Ungar, Effect of actinomycin D on morphine tolerance, Proc. Soc. Exptl. Biol. Med 119:381–383 (1965).

    Google Scholar 

  73. J. Yamamoto, R. Inoki, Y. Tamari, and K. Iwatsubo, Inhibitory effect of 8-azaguanine on the development of tolerance in the analgesic action of morphine, Jap. J. Pharmacol 17:140–142 (1967).

    Article  Google Scholar 

  74. M. T. Spoerlein and J. Scrafani, Effects of time and 8-azaguanine on the development of morphine tolerance, Life Sci 6:1549–1564 (1967).

    Article  Google Scholar 

  75. A. A. Smith, M. Karmin, and J. Gavitt, Tolerance to the lenticular effects of opiates, J. Pharmacol. Exptl. Therap 156:85–91 (1967).

    Google Scholar 

  76. B. M. Cox, M. Ginsburg, and O. H. Osman, Acute tolerance to narcotic analgesics in rats, Brit. J. Pharmacol 33:245–256 (1968).

    Google Scholar 

  77. B. M. Cox and O. H. Osman, The role of protein synthesis inhibition in the prevention of morphine tolerance, Brit. J. Pharmacol 35:373 (1969).

    Google Scholar 

  78. B. M. Cox and M. Ginsburg, Is there a relationship between protein synthesis and tolerance to analgesic drugs?, in “Scientific Basis of Drug Dependence” (H. Steinberg, ed.) J. and A. Churchill, London (1969).

    Google Scholar 

  79. A. A. Smith, M. Karmin, and J. Gavitt, Blocking effect of puromycin, ethanol and chloroform on the development of tolerance to an opiate, Biochem. Pharmacol 151:1877–1879 (1966).

    Article  Google Scholar 

  80. H. H. Loh, F. Shen, and E. L. Way, Effects of cycloheximide on the development of morphine tolerance and physical dependence, Biochem. Pharmacol 18:2711–2718 (1969).

    Article  Google Scholar 

  81. M. P. Feinberg and J. Cochin, Effect of weekly doses of cycloheximide on tolerance to morphine in the rat, The Pharmacologist 11:256 (1969).

    Google Scholar 

  82. M. P. Feinberg and J. Cochin, Effect of cyclophosphoramide on tolerance to morphine, The Pharmacologist 10:188 (1968).

    Google Scholar 

  83. M. Brossard and J. H. Quastel, Effect of morphine and tofranil on the incorporation of P32 into phospholipids of slices, Biochem. Pharmacol 12:766–768 (1963).

    Article  Google Scholar 

  84. S. J. Mulé, Effect of morphine and nalorphine on the metabolism of phospholipids in guinea-pig cerebral cortex slices, J. Pharmacol. Exptl. Therap 154:370–383 (1966).

    Google Scholar 

  85. S. J. Mulé, Morphine and the incorporation of P32 into brain phospholipids of non-tolerant, tolerant and abstinent guinea-pigs, J. Pharmacol. Exptl. Therap 156:92–100 (1967).

    Google Scholar 

  86. S. J. Mulé, Inhibition of phospholipid facilitated Ca++ transport by CNS acting drugs, Biochem. Pharmacol 18:339–346 (1969).

    Article  Google Scholar 

  87. R. Jaques, Morphine as an inhibitor of Prostaglandin in isolated guinea-pig intestine, Experientia 25:1059–1060 (1969).

    Article  Google Scholar 

  88. J. Sanner, Prostaglandin inhibition with a dibenzoxazepine hydrazide derivative and morphine, Ann. N.Y. Acad. Sci 180:396–406 (1971).

    Article  Google Scholar 

  89. J. D. Green and G. W. Harris, The neurovascular link between the neurohypophysis and adenohypophysis, J. Endocrinol 5:136–146 (1947).

    Article  Google Scholar 

  90. R. Guillemin, The adenohypophysis and its hypothalamic control, Ann. Rev. Physiol 29: 313–348 (1967).

    Article  Google Scholar 

  91. A. V. Schalley, A. Arimura, C. Y. Bowers, A. J. Kastin, S. Sawano, and T. W. Redding, Hypothalamic neurohormones regulating anterior pituitary function, Recent Progr. Horm. Res 24:497–588 (1968).

    Google Scholar 

  92. R. Burgus and R. Guillemin, Hypothalamic releasing factors, Ann. Rev. Biochem 39: 499–526 (1970).

    Article  Google Scholar 

  93. R. George and E. L. Way, Studies on the mechanism of pituitary-adrenal activation by morphine, Brit. J. Pharmacol 10:260–264 (1955).

    Google Scholar 

  94. R. George and E. L. Way, The role of the hypothalamus in pituitary-adrenal activation and antidiuresis by morphine, J. Pharmacol. Exptl. Therap 125:111–115 (1959).

    Google Scholar 

  95. V. J. Lotti, N. Kokka, and R. George, Pituitary-adrenal activation by intra-hypothalamic micro-injection of morphine, Neuroendocrinology 4:326–332 (1969).

    Article  Google Scholar 

  96. V. J. Lotti, P. Lomax, and R. George, Temperature response in the rat following intracerebral micro-injection of morphine, J. Pharmacol. Exptl. Therap 150:135–139 (1965).

    Google Scholar 

  97. O. Nikodijevic and R. P. Maickel, Some effects of morphine in pituitary-adrenocortical function in the rat, Biochem. Pharmacol 16:2137–2142 (1967).

    Article  Google Scholar 

  98. E. Paroli and P. Melchiorri, Urinary excretion of hydroxysteroids and aldosterone in rats during a cycle of treatment with morphine, Biochem. Pharmacol 6:1–17 (1961).

    Article  Google Scholar 

  99. A. J. Eisenmann, H. T. Fraser, and J. W. Brooks, Urinary excretion and plasma levels of 17-hydroxycorticosteroids during a cycle of addiction to morphine, J. Pharmacol. Exptl. Therap 132: 226–231 (1961).

    Google Scholar 

  100. M. G. Slusher and B. Browning, Morphine inhibition of plasma corticosteroid levels in chronic catherized rats, Am. J. Physiol 200:1032–1034 (1961).

    Google Scholar 

  101. R. K. McDonald, F. T. Evans, V. K. Weise, and R. W. Patrick, Effects of morphine and nalorphine on plasma hydroxycorticosteroid levels in man, J. Pharmacol. Exptl. Therap 125:241–247(1959).

    Google Scholar 

  102. T. W. Redding, C. Y. Bowers, and A. V. Schalley, Effects of morphine and other narcotics on thyroid function in mice, Acta Endocrinol 51:391–399 (1966).

    Google Scholar 

  103. E. G. Rennels, Effect of morphine on pituitary cytology and gonadotrophic levels in the rat, Texas Rep. Biol. Med 19:646–657 (1961).

    Google Scholar 

  104. F. Bernheim and M. L. C. Bernheim, Action of drugs on the Cholinesterase of brain, J. Pharmacol. Exptl. Therap 57:427–436 (1936).

    Google Scholar 

  105. D. Slaughter and D. W. Munsell, New aspects of morphine action: Cholinergic effects on pain, J. Pharmacol. Exptl. Therap 66:33–36 (1939).

    Google Scholar 

  106. M. Vogt, Concentration of sympathin in different parts of the CNS under normal conditions and after the administration of drugs, J. Physiol 123:451–481 (1954).

    Google Scholar 

  107. E. L. Way and F. H. Shen, The effects of narcotic analgesic drugs on catecholamines and 5-hydroxytryptamine, in “Narcotic Drugs: Biochemical Pharmacology” (D. H. Clouet, ed.) Plenum Press, New York (1971).

    Google Scholar 

  108. M. Weinstock, The effects of narcotic analgesic drugs on acetylcholine and cholinesterases, in “Narcotic Drugs: Biochemical Pharmacology” (D. H. Clouet, ed.) Plenum Press, New York (1971).

    Google Scholar 

  109. J. A. Schneider, Reserpine antagonism of morphine analgesia in mice, Proc. Soc. Exptl. Biol. Med 87:614–615 (1954).

    Google Scholar 

  110. W. L. Dewey, L. S. Harris, J. F. Howes, and J. A. Nuite, The effect of various neurohumoral modulators on the activity of morphine and the narcotic antagonists in the tail-flick and phenylquinone tests, J. Pharmacol. Exptl. Therap 175:435–442 (1970).

    Google Scholar 

  111. R. A. Verri, F. G. Graef, and A. P. Corrado, Antagonism of morphine analgesia by reserpine and alpha-methyl tyrosine and the role played by catecholamines in morphine analgesic action, J. Pharm. Pharmacol 19:264–265 (1967).

    Article  Google Scholar 

  112. L. M. Gunne, Catecholamines and 5-hydroxytryptamine in morphine tolerance and withdrawal, Acta Physiol. Scand 58:1–91 (1963).

    Google Scholar 

  113. E. W. Maynert and G. I. Klingman, Tolerance to morphine: Effects on catecholamines in brain and adrenal gland, J. Pharmacol. Exptl. Therap 143:285–295 (1964).

    Google Scholar 

  114. C. B. Smith, J. E. Villarreal, J. H. Bednarczyk, and M. I. Sheldon, Tolerance to morphineinduced increases in C14-catecholamine synthesis in mouse brain, Science 170:1106–1113 (1970).

    Article  Google Scholar 

  115. H. Tagaki and N. Nakama, Effect of morphine and nalorphine on the content of dopamine in mouse brain, Jap. J. Pharmacol 16:482–483 (1966).

    Google Scholar 

  116. L. M. Gunne and J. Johnson, Effects of morphine intoxication in brain catecholamine neurons, Europ. J. Pharmacol 5:338–342 (1969).

    Article  Google Scholar 

  117. D. H. Clouet and M. Ratner, The biosynthesis of catecholamines in the brains of morphine-treated rats, Reported to the Committee on Problems of Drug Dependence (1970).

    Google Scholar 

  118. B. B. Brodie, P. A. Shore, and A. Pletscher, Serotonin-releasing activity limited to rauwolfia alkaloids with tranquilizing action, Science 123:992–993 (1956).

    Article  Google Scholar 

  119. E. W. Maynert, G. I. Klingman, and H. K. Taki, Tolerance to morphine: Lack of effect on 5-OH tryptamine and GABA, J. Pharmacol. Exptl. Therap 135:296–299 (1962).

    Google Scholar 

  120. K. J. Rogers and J. A. Thornton, The interaction between monoamine oxidase inhibitors and narcotic analgesics in mice, Brit. J. Pharmacol 36:470–480 (1969).

    Google Scholar 

  121. S. S. Tenon, Antagonism of the analgesic effect of morphine and other drugs by p-chlorophenylalanine, a serotonin depletor, Psychopharmacologia 12:278–285 (1968).

    Article  Google Scholar 

  122. E. L. Way, H. H. Loh, and F. H. Shen, Morphine tolerance, physical dependence and the synthesis of brain serotonin, Science 162:1290–1292 (1968).

    Article  Google Scholar 

  123. D. R. Haubrich and D. E. Blake, Effect of acute and chronic administration of morphine on the metabolism of brain serotonin in rats, Fed. Proc 28:793 (1969).

    Google Scholar 

  124. D. L. Cheney and A. Goldstein, Narcotic tolerance and dependence: Lack of relationship with serotonin turnover in the brain, Science 171:1169–1170 (1971).

    Article  Google Scholar 

  125. E. W. Maynert, Analgesic drugs and brain neurotransmitters. I. Effects of morphine on acetylcholine and certain other transmitters, Arch. Biol. Med. Exptl 4:136–137 (1967).

    Google Scholar 

  126. K. Hano, H. Kaneto, T. Kakunaga, and N. Moribayashi, The administration of morphine and changes in acetylcholine metabolism in mouse brain, Biochem. Pharmacol 13:441–447 (1964).

    Article  Google Scholar 

  127. J. F. Howes, L. S. Harris, W. L. Dewey, and C. A. Voyda, Brain acetylcholine levels and inhibition of the tail-flick reflex in mice, J. Pharmacol. Exptl. Therap 169:23–28 (1969).

    Google Scholar 

  128. W. A. Large and A. S. Milton, The effect of acute and chronic morphine administration on brain acetylcholine levels, Brit. J. Pharmacol 38:451 P (1970).

    Google Scholar 

  129. K. Datta, L. Thal, and I. Wajda, The effect of morphine on choline acetyltransferase levels in the caudate nucleus of the rat, Brit. J. Pharmacol 41:84–92 (1971).

    Google Scholar 

  130. R. W. Morris, Effects of drugs on the biosynthesis of acetylcholinesterase: Pentobarbital, morphine and morphinan derivatives, Arch. Int. Pharmacodyn. Therap 133:236–243 (1961).

    Google Scholar 

  131. D. Beleslin and R. L. Polak, Depression by morphine and chloralose of acetylcholine release from cat’s brain, J. Physiol 177:411–419 (1965).

    Google Scholar 

  132. J. Schuberth, J. Sollenberg, A. Sundwall, and B. Sörbo, Acetyl CoA in brain: The effect of centrally active drugs, insulin coma and hypoxia, J. Neurochem 13:819–822 (1966).

    Article  Google Scholar 

  133. T. Shikimi, H. Kaneto, and K. Hano, Effect of morphine on the liberation of acetylcholine from the mouse cerebral cortex slices in relation to Ca++ concentration in the medium, Jap. J. Pharmacol 17:136–137 (1967).

    Article  Google Scholar 

  134. M. Sharkawi and M. P. Shulman, Inhibition by morphine of the release of acetylcholine-14C from rat brain cortex slices, J. Pharm. Pharmacol 21:546–547 (1969).

    Article  Google Scholar 

  135. J. Schuberth and A. Sundwall, Effects of some drugs on the uptake of acetylcholine in cortex slices of rat brain, J. Neurochem 14:807–812 (1967).

    Article  Google Scholar 

  136. K. Kuriyama, E. Roberts, and J. Vos, Some characteristics of the binding of GABA and AcCH to a synaptic vesicle fraction from mouse brain, Brain Res 9:231–252 (1968).

    Article  Google Scholar 

  137. W. Schaumann, A. hypothesis of cholinergic mechanism for the action of morphine, N.-S. Arch. Parmakol. Exptl. Pathol 237:229–240 (1959).

    Google Scholar 

  138. W. L. Dewey and L. S. Harris, Narcotic-antagonist analgesics, effects on brain cholinesterases, The Pharmacologist 9:230 (1967).

    Google Scholar 

  139. A. C. Lane, I. R. Macfarlane, and A. McCoubrey, Inhibition of cholinesterases by complex derivatives of morphine, Biochem. Pharmacol 15:122–123 (1966).

    Article  Google Scholar 

  140. G. E. Hein and K. Powell, Evaluation of kinetic constants for mixed inhibitors of Cholinesterase, Biochem. Pharmacol 16:567–573 (1966).

    Article  Google Scholar 

  141. M. J. Ettinger and A. Gero, Interactions of narcotics and their antagonists with human serum esterase, Arch. Int. Pharmacodyn. Therap 164:96–110 (1966).

    Google Scholar 

  142. M. J. Ettinger and A. Gero, Nature of the antagonism between narcotics and antagonists on human serum esterase, Arch. Int. Pharmacodyn. Therap 164:111–119 (1966).

    Google Scholar 

  143. E. W. Maynert, Some aspects of the comparative pharmacology of morphine, Fed. Proc 26:1111–1114 (1967).

    Google Scholar 

  144. M. Sasaki, Studies on the phenomenon of abstinence of the morphinized culture in vitro, Jap. J. Med. Sci 9:34–61 (1936).

    Google Scholar 

  145. E. J. Simon, Effects of narcotic analgesics in single cell, in “Narcotic Drugs: Biochemical Pharmacology” (D. H. Clouet, ed.) Plenum Press, New York (1971).

    Google Scholar 

  146. W. D. Noteboom and G. C. Mueller, Inhibition of cell growth and the synthesis of RNA and protein in Hela cells by morphinans and related compounds, Molec. Pharmacol 5: 38–48 (1969).

    Google Scholar 

  147. E. J. Simon, Inhibition of bacterial growth by drugs of the morphine series, Science 144: 543–544 (1964).

    Article  Google Scholar 

  148. E. F. Gale, Effects of diacetylmorphine and related morphinans on some biochemical activities of S. aureus, Molec. Pharmacol 6:128–133 (1970).

    Google Scholar 

  149. E. J. Simon, L. Schapira, and N. Wurster, Effect of levorphanol on cell membranes, Bull. N. Y. Acad. Med 45:500 (1969).

    Google Scholar 

  150. D. H. Clouet and N. Williams, Localization in brain particulate fractions of narcotic analgesic drugs administered intracisternally to rats, Biochem. Pharmacol 22:1283–1294 (1973).

    Article  Google Scholar 

  151. A. Goldstein, L. I. Lowney, and B. K. Pal, Stereospecific and nonspecific interactions of the morphine congener, levorphanol, in subcellular fractions of mouse brain, Proc. Natl. Acad. Sci 68:1742–1749 (1971).

    Article  Google Scholar 

  152. D. H. Clouet and N. Williams, The effect of morphine on the uptake and release of neurotransmitters by isolated synaptosomes, Abst. Commun. Fifth Internat. Congr. Pharmacol (July 1972).

    Google Scholar 

  153. W. R. Martin and C. G. Eades, Demonstration of tolerance and physical dependence in the dog following short-term infusion of morphine, J. Pharmacol. Exptl. Therap 133: 262–270 (1961).

    Google Scholar 

  154. M. D. Day and M. J. Rand, Tachyphylaxis to some sympathomimetic amines in relation to monoamine oxidase, Brit. J. Pharmacol 21:84–89 (1963).

    Google Scholar 

  155. U. Trendelenburg, A. Muskus, W. W. Fleming, and B. G. Alonso de la Sierra, Modification by reserpine of the action of some sympathomimetic amines in spinal cats, J. Pharmacol. Exptl. Therap 138:170–172 (1962).

    Google Scholar 

  156. I. J. Kopin, J. E. Fleisher, J. M. Musacchio, W. D. Horst, and V. K. Weise, False neurotransmitters and the mechanism of sympathetic blockade by monoamine oxidase inhibitors, J. Pharmacol. Exptl. Therap 147:186–190 (1965).

    Google Scholar 

  157. W. D. M. Paton, Transmission and block in autonomic ganglia, Pharmacol. Rev 6:59–64 (1954).

    Google Scholar 

  158. W. Schaumann, The inhibition by morphine of the release of acetylcholine from the intestine of the guinea-pig, Brit. J. Pharmacol 12:115–118 (1957).

    Google Scholar 

  159. W. D. M. Paton, The action of morphine and related substances on contraction and acetylcholine output, Brit. J. Pharmacol 12:119–124 (1957).

    Google Scholar 

  160. A. B. Carnie, H. W. Kosterlitz, and D. W. Taylor, Effect of morphine on some sympathetically innervated effectors, Brit. J. Pharmacol 17:539–551 (1961).

    Google Scholar 

  161. D. H. Clouet, The alteration of brain metabolism by narcotic drugs, in “Handbook of Neurochemistry” (A. Lajtha, ed.) Vol. 6, Plenum Press, New York (1971).

    Google Scholar 

  162. C. B. Smith, M. I. Sheldon, J. H. Bednarczyk, and J. E. Villarreal, Morphine-induced increases in the incorporation of C14-tyrosine into C14-dopamine and C-14norepinephrine in the mouse brain: Antagonism by naloxone and tolerance, J. Pharmacol. Exptl. Therap 180:547–557 (1972).

    Google Scholar 

  163. C. P. Headlee, H. W. Coppock, and J. R. Nichols, Apparatus and technique involved in a laboratory method of detecting addictiveness of drugs, J. Am. Pharm. Ass 44:229–231 (1955).

    Article  Google Scholar 

  164. A. Wikler and S. Altschul, Effects of methadone and morphine on the electroencephalogram of the dog, J. Pharmacol. Exptl. Therap 98:437–446 (1950).

    Google Scholar 

  165. A. S. De Carolis and V. G. Longo, The effects of morphine and related drugs on the electrical activity of brain: Their relationship with analgesic action, Arch. Biol. Med. Exptl 4:24–28 (1967).

    Google Scholar 

  166. S. D. Echols and R. E. Jewett, Effects of morphine on the sleep of cats, The Pharmacologist 11:254 (1969).

    Google Scholar 

  167. W. A. Bleyer and M. G. Rosen, Meperidine-induced changes in the maternal and fetal EEGs of the guinea-pig, Electroencephalog. Clin. Neurophysiol 24:249–258 (1968).

    Article  Google Scholar 

  168. N. Khazan, J. R. Weeks, and L. A. Schroeder, Electroencephalographic, electromyographic and behavioral correlates during a cycle of self-maintained morphine addiction in the rat, J. Pharmacol. Exptl. Therap 155:521–531 (1967).

    Google Scholar 

  169. J. M. Nelson and C. Kornetsky, Single dose tolerance to morphine sulfate, The Pharmacologist 10:188 (1968).

    Google Scholar 

  170. H. Gangloff and M. Monnier, The topical action of morphine, levorphanol and levallorphan on the unanesthetized rabbit’s brain, J. Pharmacol. Exptl. Therap 121:629–636 (1957).

    Google Scholar 

  171. H. L. Andrews, Changes in the EEG during a cycle of morphine addiction, Psychosom. Med 3:399–409 (1943).

    Google Scholar 

  172. A. Wikler, “Opiate Addiction,” Charles C. Thomas, Springfield, Ill. (1953).

    Google Scholar 

  173. M. Matousek, J. Volavka, J. Roubicek, and Z. Roth, EEG frequency analysis related to age in normal adults, Electroencephalog. Clin. Neurophysiol 23:162–167 (1967).

    Article  Google Scholar 

  174. M. Fink, A. Zaks, J. Volavka, and J. Roubicek, Electrophysiological studies in man, in “Narcotic Drugs: Biochemical Pharmacology” (D H. Clouet, ed.) Plenum Press, New York (1971).

    Google Scholar 

  175. J. Roubicek, J. Volavka, A. Zaks, and M. Fink, Electrographic effects of chronic administration of methadone, Neuropharmacol. Psychopharmacol (in press).

    Google Scholar 

  176. M. Fink, T. Itil, A. Zaks, and A. M. Freedman, EEG Patterns of cyclazocine, a narcotic antagonist, in “Neurophysiological and Behavioral Aspects of Psychotropic Drugs” (A. G. Karczmar and W. P. Koella, eds.) Charles C. Thomas, Springfield, Ill. (1969).

    Google Scholar 

  177. C. K. Himmelsbach, With reference to physical dependence, Fed. Proc 2:201 (1943).

    Google Scholar 

  178. L. Shuster, Repression and de-repression of enzyme synthesis as a possible explanation of some aspects of drug action, Nature 189:314–315 (1961).

    Article  Google Scholar 

  179. D. B. Goldstein and A. Goldstein, Possible role of enzyme inhibition and repression in drug tolerance and addiction, Biochem. Pharmacol 8:48–49 (1961).

    Article  Google Scholar 

  180. H. O. J. Collier, Supersensitivity and dependence, Nature 220:228–231 (1968).

    Article  Google Scholar 

  181. J. Jaffe and S. K. Sharpless, The rapid development of physical dependence on barbiturates, J. Pharmacol. Exptl. Therap 150:140–145 (1965).

    Google Scholar 

  182. L. Shuster, Tolerance and physical dependence, in “Narcotic Drugs: Biochemical Pharmacology” (D. H. Clouet, ed.) Plenum Press, New York (1971).

    Google Scholar 

  183. G. Ungar and L. Galvan, Conditions of transfer of morphine tolerance by brain extracts, Proc. Soc. Exptl. Biol. Med 130:287–290 (1969).

    Google Scholar 

  184. S. Spector and C. W. Parker, Morphine: Radioimmunoassay, Science 168:1347–1348 (1970).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Clouet, D.H. (1973). Effects of Narcotic Analgesics on Brain Function. In: Gaull, G.E. (eds) Biology of Brain Dysfunction. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2670-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2670-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2672-4

  • Online ISBN: 978-1-4684-2670-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics