Skip to main content

Structured and Simultaneous Lyapunov Functions for System Stability Problems

  • Chapter
Robustness in Identification and Control

Part of the book series: Applied Information Technology ((AITE))

Abstract

It is shown that many system stability and robustness problems can be reduced to the question of when there is a quadratic Lyapunov function of a certain structure which establishes stability of x = Ax for some appropriate A. The existence of such a Lyapunov function can be determined by solving a convex program. We present several numerical methods for these optimization problems. A simple numerical example is given. Proofs can be found in Boyd and Yang [BY88].

Research sponsored in part by ONR under N00014-86-K-0112, NSF under ECS-85-52465, an IBM faculty development award, and Bell Communications Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. J. Arrow, L. Hurwicz, and H. Uzawa. Studies in Linear and Nonlinear Programming. Stanford University Press, Stanford, California, 1958.

    Google Scholar 

  2. B. D. O. Anderson. A system theory criterion for positive real matrices. SIAM J. Control, 5:171–182, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Araki. Input-output stability of composite feedback sytems. IEEE Trans. Aut. Control, AC-21:254–259, 1976.

    Article  MathSciNet  Google Scholar 

  4. G. P. Barker, A. Berman, and R. J. Plemmons. Positive diagonal solutions to the Lyapunov equations. Linear and Multilinear Algebra, 5:249–256, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. K. Brayton and C. H. Tong. Stability of dynamical systems: a constructive approach. IEEE Trans. Circuits Syst., CAS-26(4):224–234, 1979.

    Article  MathSciNet  Google Scholar 

  6. R. K. Brayton and C. H. Tong. Constructive stability and asymptotic stability of dynamical systems. IEEE Trans. Circuits Syst., CAS-27(11):1121–1130, 1980.

    Article  MathSciNet  Google Scholar 

  7. R. W. Brockett and J. L. Willems. Frequency domain stability criteria. IEEE Trans. Aut. Control, AC-10:255–261, 401–413, 1965.

    Google Scholar 

  8. S. Boyd and Q. Yang. Structured and simultaneous Lyapunov functions for system stability problems. Int. J. Control, to appear 1988.

    Google Scholar 

  9. F. H. Clarke. Optimization and Nonsmooth Analysis. Canadian Mathematical Society Series, Wiley, New York, 1983.

    Google Scholar 

  10. J. C. Doyle. Analysis of feedback systems with structured uncertainties. IEE Proc., 129(6), November 1982.

    Google Scholar 

  11. C. A. Desoer and M. Vidyasagar. Feedback Systems: Input-Output Properties. Academic Press, New York, 1975.

    MATH  Google Scholar 

  12. V. F. Demyanov and L. V. Vasilev. Nondifferentiable Optimization. Optimization Software (Springer-Verlag), New York, 1985.

    Book  Google Scholar 

  13. M. Fiedler and V. Ptak. On matrices with non-positive off-diagonal elements and positive principal minors. Czechoslovak Mathematical Journal, 87:382–400, 1962.

    MathSciNet  Google Scholar 

  14. M. Fiedler and V. Ptak. Some generalizations of positive definiteness and monotonicity. Numerische Mathematik, 9:163–172, 1966.

    Article  MathSciNet  MATH  Google Scholar 

  15. H. P. Horisberger and P. R. Belanger. Regulators for linear, time invariant plants with uncertain parameters. IEEE Trans. Aut. Control, AC-21:705–708, 1976.

    Article  MathSciNet  Google Scholar 

  16. Hui Hu. An algorithm for rescaling a matrix positive definite. Linear Algerbra and Its Applications, 96:131–147, 1987.

    Article  MATH  Google Scholar 

  17. V. A. Kamenetskii. Absolute stability and absolute instability of control systems with several nonlinear nonstationary elements. Automation and Remote Control, a translation of Automatika i Telemekhnika, (12):1543–1552, 1983.

    MathSciNet  Google Scholar 

  18. T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag, New York (second edition), 1984.

    MATH  Google Scholar 

  19. J. E. Kelley. The cutting-plane method for solving convex programs. J. Soc. Indust. Appl. Math, 8(4):703–712, December 1960.

    Article  MathSciNet  Google Scholar 

  20. H. K. Khalil. On the existence of positive diagonal P such that PA + A T P < 0. IEEE Trans. Aut. Control, AC-27:181–184, 1982.

    Article  MathSciNet  Google Scholar 

  21. H. K. Khalil and P. V. Kokotovic. D-stability and multiparameter singular perturbation. SIAM J. Contr. Optimiz., 17:56–65, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  22. V. A. Kamenetskii and E. S. Pyatnitskii. Gradient method of constructing Lyapunov functions in problems of absolute stability. Automation and Remote Control, a translation of Automatika i Telemekhnika, (1):1–9, 1987.

    Google Scholar 

  23. P. J. Moylan and D.J. Hill. Stability criteria for large-scale systems. IEEE Trans. Aut. Control, AC-23:143–149, 1978.

    Article  MathSciNet  Google Scholar 

  24. M. L. Overton. On Minimizing the Maximum Eigenvalue of a Symmetric Matrix. Technical Report, Center for Mathematical Analysis, Australian National University, 1987. to appear, Linear Algebra in Signals, Systems and Control (SIAM, Philadelphia, 1987).

    Google Scholar 

  25. M. L. Overton and R. S. Wormley. On minimizing the spectral radius of a non-symmetric matrix function—optimality conditions and duality theory. Technical Report, Center for Mathematical Analysis, Australian National University, 1987.

    Google Scholar 

  26. B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, 1980.

    MATH  Google Scholar 

  27. E. S. Pyatnitskii and V. I. Skorodinskii. Numerical method of construction of Lyapunov functions and absolute stability criteria in the form of numerical procedures. Automation and Remote Control, a translation of Automatika i Telemekhnika, (11):1427–1437, 1983.

    MathSciNet  Google Scholar 

  28. E. Polak and Y. Wardi. A nondifferentiable optimization algorithm for the design of control systems subject to singular value inequalities over a frequency range. Automatica, 18(3):267–283, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  29. R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, second edition, 1972.

    Google Scholar 

  30. N. Z. Shor. Minimization Methods for Non-differentiable Functions. Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1985.

    Book  Google Scholar 

  31. M. G. Safonov and G. Wyetzner. Computer-aided stability criterion renders Popov criterion obsolete. IEEE Trans. Aut. Control, AC-32(12):1128–1131, december 1987.

    Google Scholar 

  32. J. C. Willems. The construction of Lyapunov functions for input-output stable systems. SIAM J. Control, 9:105–134, 1971.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. C. Willems. Least squares stationary optimal control and the algebraic Riccati equation. IEEE Trans. Automatic Control, AC-16:621–634, 1971.

    Article  MathSciNet  Google Scholar 

  34. J. C. Willems. Dissipative dynamical systems I: General theory. II: Linear systems with quadratic supply rates. Archive for Rational Mechanics and Analysis, 45:321–343, 1972.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Boyd, S., Yang, Q. (1989). Structured and Simultaneous Lyapunov Functions for System Stability Problems. In: Milanese, M., Tempo, R., Vicino, A. (eds) Robustness in Identification and Control. Applied Information Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9552-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9552-6_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9554-0

  • Online ISBN: 978-1-4615-9552-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics