Skip to main content

Factors Modulating the Oxygen Dependence of Mitochondrial Oxidative Phosphorylation

  • Chapter
  • First Online:
Oxygen Transport to Tissue X

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 222))

Abstract

The oxygen consumed by mitochondrial oxidative phosphorylation is reduced to water by the enzyme cytochrome c oxidase. This reaction has the overall stoichiometry:

$$4{H^{ + \;}} + \;{0_{2\;}} + \;4{c^{2 + \;}} + \;2ADP\; + \;2Pi\, \to \,4{c^{3 + }} + \;{H_2}0\; + \;2ATP $$
((1))

Electrons from cytochrome c and hydrogen ions from the aqueous phase are required for reduction of dioxygen to water. In order to understand the role of cytochrome c oxidase in the regulation of mitochondrial respiration, one must keep in mind that the reduction of dioxygen to water is irreversible under all metabolic conditions. This means that in any steady state the rate of respiration is equal to the rate of electron transfer through cytochrome £ oxidase. In order for the mitochondrial respiratory rate to change it is necessary for the rate of oxygen reduction by cytochrome £ oxidase to change by the same amount and in the same direction. Metabolic effectors of the rate of mitochondrial respiration in vivo and in vitro ultimately do so by modulating the rate of electron transfer through cytochrome £ oxidase. Part of the energy available in the cytochrome c oxidase reaction is released as heat and part is conserved by the synthesis of ATP. The latter occurs through a coupling mechanism which involves reaction intermediates, i.e., there is no direct interaction of ADP, Pi or ATP with the enzyme.

Supported by grant GM-21524 from the National Institutes of Health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.F. Wilson, M. Erecinska and P. Nicholls, An energy dependent transformation of a ferricytochrome of the mitochondrial respiratory chain, FEBS Letters, 20:61–65 (1972).

    Article  CAS  Google Scholar 

  2. D.F. Wilson, C.S. Owen and A. Holian, Control of mitochondrial respiration: A quantitative evaluation of the roles of cytochrome c and oxygen, Arch. Biochem. Biophys., 182:749–762 (1977).

    Article  CAS  Google Scholar 

  3. D.F. Wilson, C.S. Owen and M. Erecinska, Quantitative dependence of mitochondrial oxidative phosphorylation on oxygen concentration: a mathematical model, Arch. Biochem. Biophys., 195:494–504 (1979).

    Article  CAS  Google Scholar 

  4. N.L. Greenbaum and D.F. Wilson, Dependence of the 3-OH-butyrate dehydrogenase and cytochrome c oxidase reactions on intramitochondrial pH, in “Membrane Biochemistry and Bioenergetics”, in press.

    Google Scholar 

  5. M. Erecinska, D.F. Wilson and K. Nishiki, Homeostatic regulation of cellular energy metabolism: experimental characterization in vivo and fit to a model. Am. J. Physiol. 234(3):C82–C89 (1978).

    Article  CAS  Google Scholar 

  6. R. S. Balaban, H.L. Kantor, L.A. Katz and R.W. Briggs, Relation between work and phosphate metabolite in the in vivo paced mammalian heart, Science, 232:1121–1123 (1986).

    Article  CAS  Google Scholar 

  7. J.M. Vanderkooi and D.F. Wilson, A new method for measuring oxygen in biological systems, Adv. Exptl. Med. Biol., 200:189–193 (1986).

    Article  CAS  Google Scholar 

  8. D.F. Wilson, J.M. Vanderkooi, T.J. Green, G. Maniara, S.P. DeFeo and D.C. Bloomgarden, A versitile and sensitive method for measuring oxygen, Adv. Exptl. Med. Biol. in press (1987).

    Google Scholar 

  9. J.M. Vanderkooi, G. Maniara, T.J. Green and D.F. Wilson, An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence, J. Biol. Chem., 262:5476–5482 (1987).

    PubMed  CAS  Google Scholar 

  10. D.F. Wilson, W.L. Rumsey, T.J. Green and J.M. Vanderkooi, The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration, Submitted for publication.

    Google Scholar 

  11. D.F. Wilson and M. Erecinska, Effect of oxygen concentration on cellular metabolism, Chest, 88S:229s–232s (1985).

    Article  CAS  Google Scholar 

  12. D.F. Wilson and M. Erecinska, The oxygen dependence of cellular energy metabolism, Adv. Exptl. Med. Biol., 194:229–239 (1986).

    Article  CAS  Google Scholar 

  13. D.F. Wilson, M. Erecinska, C. Drown and I.A. Silver, The oxygen dependence of cellular energy metabolism, Arch. Biochem. Biophys., 195:485–493 (1979).

    Article  CAS  Google Scholar 

  14. D.F. Wilson, M. Erecinska, I.A. Silver, C.S. Drown and K. Nishiki, Metabolic sensing of cellular oxygen tension, Adv. Physiol. Sci., 10:391–398 (1981).

    CAS  Google Scholar 

  15. T. Kashiwagura, D.F. Wilson and M. Erecinska, Oxygen dependence of cellular metabolism: the effect of O2 on gluconeogenesis and urea synthesis in isolated hepatocytes. J. Cell. Physiol., 120:13–18 (1984).

    Article  CAS  Google Scholar 

  16. S. Fischkoff and J.M. Vanderkooi, Oxygen diffusion in biological and artificial membranes determined by the fluorochrome pyrene, J. Gen. Physiol., 65:663–676 (1975).

    Article  CAS  Google Scholar 

  17. A. Klug, F. Kreuzer and J.W. Roughton, The diffusion of oxygen in concentrated hemoglobin solutions, Helv. Physiol. Pharmacol. Acta, 14:121 (1956).

    CAS  Google Scholar 

  18. A. Clark, Jr. P. A. A. Clark, R. J. Connett, T. E. J. Gayeski and C. R. Honig, How large is the drop in PO2 between cytosol and mitochondrion, Am. J. Physiol., 252:C583–C587 (1987).

    Article  Google Scholar 

  19. D.F. Wilson, Regulation of in vivo mitochondrial oxidative phosphorylation, in “Membranes and Transport”, A.N. Martonosi, ed., pp. 349–355, Plenum Press, New York (1982).

    Chapter  Google Scholar 

  20. T.E. Gayeski and C.R. Honig, O2 gradients from sarcolemma to cell interior in red muscle at maximal (Math), Am. J. Physiol., 251:H789–H799 (1986).

    PubMed  CAS  Google Scholar 

  21. T.E. Gayeski and C.R. Honig, Shallow intracellular O2 gradients and the absence of perimitochondrial “wells” in heavily working red muscle, Adv. Exptl. Med. Biol. 200:487–494 (1986).

    Article  CAS  Google Scholar 

  22. B.A. Wittenberg and J.B. Wittenberg, Oxygen pressure gradients in isolated cardiac myocytes, J. Biol. Chem., 260:6548–6554 (1985).

    PubMed  CAS  Google Scholar 

  23. N. Oshino, T. Sugano, R. Oshino and B. Chance, Mitochondrial function under hypoxic conditions: the steady states of cytochromes a+a3 and their relation to mitochondrial energy states, Biochim. Biophys. Acta, 368:298–310 (1974).

    Article  CAS  Google Scholar 

  24. D.P. Jones and F.G. Kennedy, Analysis of intracellular oxygenation of isolated adult cardiac myocytes, Am. J. Physiol., 250:C384–C390 (1986).

    Article  CAS  Google Scholar 

  25. D.P. Jones, Intracellular diffusion gradients of O2 and ATP, Am. J. Physiol., 250:C663–C675 (1986).

    Article  CAS  Google Scholar 

  26. H. Degn and H. Wohlrab, Measurement of steady-state values of respiration rate and oxidation levels of respiratory pigments at low oxygen tensions: a new technique, Biochim. Biophys. Acta, 245:347–355 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Wilson, D.F., Rumsey, W.L. (1988). Factors Modulating the Oxygen Dependence of Mitochondrial Oxidative Phosphorylation. In: Mochizuki, M., Honig, C.R., Koyama, T., Goldstick, T.K., Bruley, D.F. (eds) Oxygen Transport to Tissue X. Advances in Experimental Medicine and Biology, vol 222. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-9510-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9510-6_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4615-9512-0

  • Online ISBN: 978-1-4615-9510-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics