Skip to main content

DNA Damage, DNA Repair and Induced Mutagenesis: Some Enzymological and Structural Considerations

  • Chapter
Mechanisms of DNA Damage and Repair

Part of the book series: Basic Life Sciences ((BLSC,volume 189))

  • 225 Accesses

Abstract

The particular interest of this symposium is to review all relevant knowledge which may help in the assessment of carcinogenic and mutagenic risk, in particular the risk arising from diverse environmental and metabolic conditions. Of special interest are the origins of somatic and germ line mutations. A priori, the majority of deleterious mutations are recessive, which as germ line mutations may cause more victims than the dominant mutations. The reason is that the majority of dominant mutations are readily recognized in the first carrier; either their propagation is directly stopped in the case of lethal mutations or they can be controlled in the case of non-lethal mutations. Recessive mutations are usually not recognized either in the first carrier or in later heterozygous carriers and they thus spread in the population repeatedly causing victims among the homozygous progeny. Homozygosity arises in the offspring of heterozygous parents by the Mendelian rule of random chromosome assortment. Homozygous somatic cell lineages can arise in heterozygous individuals by chromosomal rearrangements (mitotic recombination, deletion, non-disjunct ion). Since the normal human population contains roughly 1% heterozygous carriers for any given recessive gene mutation, a normal individual may carry on the order of 103 diverse recessive mutations, some of which when homozygous may cause severe cellular metabolic defects including cancerous growth.1 Therefore, when trying to estimate risk from carcinogenic and other deleterious mutations, one cannot underestimate the role of chromosomal rearrangement in expression of pre-existing as well as of newly arising recessive mutations.1 Early routine detection of recessive (and other) mutations in humans may become possible through development of new sensitive molecular probes.

This paper is dedicated to Professor Maurice Errera on the occasion of his 70th birthday and of his retirement as the director of the Laboratoire de Biophysique et Radiobiologie of the Universite Libre de Bruxelles The majority of the work reviewed here was carried out in the “Service Errera”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Radman, R. Wagner and P. Jeggo, Mutation Res. 92: 101 (1982).

    Google Scholar 

  2. M. Radman, in “Cellular Responses to DNA Damage11, E.C. Friedberg and B.A. Bridges ed, Plenum Press, New York, pp. 287–298 (1983).

    Google Scholar 

  3. L.A. Loeb and T.A. Kunkel, Annu. Rev. Biochem. 52: 429 (1982).

    Article  Google Scholar 

  4. M. Radman and R. Wagner, Curr. Topics Microbiol. Immun. 108: 23 (1984).

    Article  CAS  Google Scholar 

  5. J.W. Drake and R.H. Baltz, Annu. Rev. Biochem. 45: 11 (1976).

    Article  CAS  Google Scholar 

  6. M. Radman, in “Molecular and Environmental Aspects of Mutagenesis”, eds L. Prakash et al., C.C. Thomas Publ. Spring Field, III. pp. 127 (1974).

    Google Scholar 

  7. E.M. Witkin, Bacterid. Rev. 40: 869 (1976).

    CAS  Google Scholar 

  8. G.C. Walker, Microbiol. Rev. 48: 60 (1984).

    CAS  Google Scholar 

  9. P.J. Pukkila, J. Peterson, G. Herman, P. Modrich and M. Meselson, Genetics 104: 571 (1983).

    CAS  Google Scholar 

  10. R. Wagner, C. Dohet, M. Jones, M.P. Doutriaux, F. Hutchinson and M. Radman, Cold Spring Harbor Symp. Quant. Biol. 49: 611 (1984).

    Article  CAS  Google Scholar 

  11. B.W. Glickman and M. Radman, Proc. Natl. Acad. Sci. USA 77: 1063 (1980).

    Article  CAS  Google Scholar 

  12. C. Dohet, R. Wagner and M. Radman, Proc. Natl. Acad. Sci. USA 82: 503 (1985).

    Article  CAS  Google Scholar 

  13. B. Kramer, W. Kramer and H.J. Fritz, Cell 38: 879 (1984).

    Article  CAS  Google Scholar 

  14. C. Dohet, R. Wagner and M. Radman, submitted.

    Google Scholar 

  15. J. Petruska and M.F. Goodman, J. Biol. Chem. (1985) in press.

    Google Scholar 

  16. J.W. Szostak, T.L. Orr-Weaver, R.J. Rothstein and F.W. Stahl, Cell 33: 25 (1983).

    Article  CAS  Google Scholar 

  17. P. Caillet-Fauquet, G. Maenhaut-Michel and M. Radman, EMBO J. 3: 707 (1984).

    CAS  Google Scholar 

  18. G. Maenhaut-Michel and P. Caillet-Fauquet, J. Mol. Biol. 177: 181 (1984).

    Article  CAS  Google Scholar 

  19. R.D. Wood and F. Hutchinson, J. Mol. Biol. 173: 293 (1984).

    Article  CAS  Google Scholar 

  20. S. Sedgwick, Proc. Natl. Acad. Sci. USA 72: 2753 (1975).

    Article  CAS  Google Scholar 

  21. P. Caillet-Fauquet, M. Defais and M. Radman, J. Mo1. Bio1. 117: 95 (1977).

    Article  CAS  Google Scholar 

  22. M. Radman, P. Caillet-Fauquet, M. Defais and G. Villani, in “Screening Tests in Chemical Carcinogenesis” eds R. Montesano, H. Bortsch and L. Tomatis, IARC Sci. Publ. No. 12, Lyon, pp. 537–545 (1976).

    Google Scholar 

  23. G. Villani, S. Boiteux and M. Radman, Proc. Natl. Acad. Sci. USA 75: 3037 (1978).

    Article  CAS  Google Scholar 

  24. D. Lackey, S.W. Krauss and S. Linn, Proc. Natl. Acad. Sci. USA 79: 330 (1982).

    Article  CAS  Google Scholar 

  25. O.P. Doubleday, G. Maenhaut-Michel, A. Brandenburger, P. Lecomte and M. Radman, in “Chromosome Damage and Repair”, eds. E. Seeberg and K. Kleppe, Plenum Press, New York, pp. 447–459 (1981).

    Chapter  Google Scholar 

  26. P.D. Moore, K.K. Bose, S.D. Rabkin and B.S. Strauss, Prgc. Natl. Acad. Sci. USA 78: 110 (1981).

    Google Scholar 

  27. S. Boiteux and J. Laval, Biochemistry 22: 6746 (1982).

    Article  Google Scholar 

  28. S.D. Rabkin, P.D. Moore and B.S. Strauss, Prop. Natl.. Acad. Sci. USA 80: 1541 (1983).

    Article  CAS  Google Scholar 

  29. O.P. Doubleday, P. Lecomte, A. Brandenburger, W.P. Diver and M. Radman in “Induced Mutagenesis”, ed. C.W. Lawrence, Plenum Press, New York, pp. 115–134 (1983).

    Google Scholar 

  30. C. Coulondre, J.H. Miller, P.J. Farabaugh and W. Gilbert, Nature 274: 775 (1978).

    Article  CAS  Google Scholar 

  31. L.A. Loeb, Cell 40: 483 (1985).

    Article  CAS  Google Scholar 

  32. A. Brandenburger, G.N. Godson, M. Radman, B.W. Glickman, C.A. Van Sluis and O.P. Doubleday, Nature 294: 180 (1981).

    Article  CAS  Google Scholar 

  33. T.A. Kunkel, Proc. Natl. Acad. Sci. USA 81: 1494 (1984).

    Article  CAS  Google Scholar 

  34. J.H. Miller, J. Mol. Biol. 182: 45 (1985).

    Article  CAS  Google Scholar 

  35. E.J. Le Clerc and N.L. Istock, J. Mol. Biol. 180: 217 (1984).

    Article  CAS  Google Scholar 

  36. B.A. Bridges, R.P. Mottershead and S.G. Sedgwick, Mol. Gen. Genet. 144: 53 (1976).

    Article  CAS  Google Scholar 

  37. A. Brotcorne-Lannoye, G. Maenhaut-Michel and M. Radman, Mol. Gen. Genet. 199: 64 (1985).

    Article  CAS  Google Scholar 

  38. B.A. Bridges and R. Woodgate, Mol. Gen. Genet. 196: 364 (1984).

    Article  CAS  Google Scholar 

  39. R. Scheuermann, T. Schuman, P.M.J. Burgess, C. Lu and H. Echols, Proc. Natl. Acad. Sci. USA 80: 7085 (1983).

    Article  CAS  Google Scholar 

  40. O.P. Doubleday, P. Lecomte and M. Radman, in “Cellular Responses to DNA Damage”, eds. E.C. Friedberg and B.A. Bridges, Alan R. Liss, Inc., New York, pp. 489–499 (1983).

    Google Scholar 

  41. A.J. Lomant and J.R. Fresco, Progr. Nucl. Acids Res. Mol. Biol. 15: 185, (1975).

    Article  CAS  Google Scholar 

  42. A. Pardi, K.M. Morden, D.J. Patel and I. Tinoco, Biochemistry 21: 6567 (1982).

    Article  CAS  Google Scholar 

  43. K.M. Morden, G.Y. Chu, F.H. Martin and I. Tinoco, Biochemistry 22: 5557 (1983).

    Article  CAS  Google Scholar 

  44. Farzakerley, R. Teoule, A. Guy and W. Guschlbauer, FEBS Letters 176: 449 (1984).

    Article  Google Scholar 

  45. A.R. Fersht and J.W. Knill-Jones, J. Mol. Biol. 165: 669 (1983).

    Article  CAS  Google Scholar 

  46. R. Wagner and M. Meselson, Proc. Natl. Acad. Sci. USA 73: 4135 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Radman, M. (1986). DNA Damage, DNA Repair and Induced Mutagenesis: Some Enzymological and Structural Considerations. In: Simic, M.G., Grossman, L., Upton, A.C., Bergtold, D.S. (eds) Mechanisms of DNA Damage and Repair. Basic Life Sciences, vol 189. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9462-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9462-8_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9464-2

  • Online ISBN: 978-1-4615-9462-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics