Skip to main content

The Repair of Uracil-Containing DNA

  • Chapter
Mechanisms of DNA Damage and Repair

Part of the book series: Basic Life Sciences ((BLSC,volume 189))

Abstract

For what purpose does DNA contain thymine rather than uracil? This question has been approached by studying the consequences of the misincorporation of large amounts of uracil into DNA in place of thymine. Such studies have been facilitated by the isolation of special bacterial mutants. Let us first consider how uracil residues can appear in DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T. Lindahl, and B. Nyberg, Heat-induced deamination of cytosine residues in deoxyribonucleic acid, Biochemistry 13: 3405–3410 (1974).

    Article  CAS  Google Scholar 

  2. H. Hayatsu, Bisulfite modification of nucleic acids and their constituents, Prog. Nucl. Acid. Res. 16: 75–124 (1976).

    Article  CAS  Google Scholar 

  3. J. Shlomai and A. Romberg, Deoxyuridine triphosphatase of Escherichia coli. Purification, properties, and use as a reagent to reduce uracil incorporation into DNA, J. Bacteriol. 253: 3305–3312 (1978).

    CAS  Google Scholar 

  4. B.-K. Tye, P.O. Nyman, I.R. Lehman, S. Hochhauser, and B. Weiss, Transient accumulation of Okazaki fragments as a result of uracil incorporation into nascent DNA, Proc. Natl. Acad. Sci. USA 74: 154–157 (1977).

    Article  CAS  Google Scholar 

  5. G.A. O’Donovan and J. Neuhard, Pyrimidine metabolism in microorganisms, Bacteriol. Rev. 34: 278–243 (1970).

    Google Scholar 

  6. S.J. Hochhauser and B. Weiss, Escherichia coli mutants deficient in deoxyuridine triphosphatase, J. Bacteriol. 134: 157–166 (1978).

    CAS  Google Scholar 

  7. T. Lindahl, DNA repair enzymes, Ann. Rev. Biochem. 51: 61–87 (1982).

    Article  CAS  Google Scholar 

  8. A.F. Taylor and B. Weiss, Role of exonuclease III in the base-excision repair of uracil-containing DNA, J. Bacteriol. 151: 351–357 (1982).

    CAS  Google Scholar 

  9. C Goffin and W.G. Verly, T4 DNA ligase can seal a nick in doublestranded DNA limited by a 5′-phosphorylated base-free deoxyribose residue, Nucleic Acids Res. 11: 8103–8109 (1983).

    Article  CAS  Google Scholar 

  10. B.-K. Tye and I.R. Lehman, Excision repair of uracil incorporated in DNA as a result of a defect in dUTPase, J. Mol. Biol. 117: 293–306 (1977).

    Article  CAS  Google Scholar 

  11. H.R. Warner, B.F. Demple, W.A. Deutsch, CM. Kane, and S. Linn, Apurinic/apyrimidinic endonucleases in repair of pyrimidine dimers and other lesions in DNA, Proc. Natl. Acad. Sci. USA 77: 4602–4606 (1980).

    Article  CAS  Google Scholar 

  12. R.P. Cunningham and B. Weiss, Endonuclease III (nth) mutants of Escherichia coli. Proc. Natl. Acad. Sci. USA 82: 474–478 (1985).

    Article  CAS  Google Scholar 

  13. G.C. Walker, Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli, Microbiol. Rev. 48: 60–93 (1984).

    CAS  Google Scholar 

  14. B.K. Duncan and B. Weiss, Specific mutator effects of ung (uracil-DNA glycosylase) mutations in Escherichia coli, J. Bacteriol. 151: 750–755 (1982).

    CAS  Google Scholar 

  15. B.K. Duncan, DNA glycosylases, p. 565-586, in: “The Enzymes,” P.D. Boyer, ed., Academic Press, New York, (1981).

    Google Scholar 

  16. H.R. Warner, B.K. Duncan, C. Garrett, and J. Neuhard, Synthesis and metabolism of uracil-containing deoxyribonucleic acid in Escherichia coli, J. Bacteriol. 145: 687–695. (1981).

    CAS  Google Scholar 

  17. E.F. Fisher and M.H. Caruthers, Studies on gene control regions XII. The functional significance of a Lac operator constitutive mutation, Nucleic Acids Res. 7: 401–416 (1979).

    Article  CAS  Google Scholar 

  18. L.G. Lundberg, H.-O. Thoresson, O.H. Karlstrom, and P.O. Nyman, Nucleotide sequence of the structural gene for dUTPase of Escherichia coli K-12, The EMBO Journal, 2: 967–971 (1983).

    CAS  Google Scholar 

  19. L.G. Lundberg, O.H. Karlstrom, P.O. Nyman, Isolation and characterization of the dut gene of Escherichia coli. II. Restriction enzyme mapping and analysis of polypeptide products, Gene 22: 127–131 (1983).

    Article  CAS  Google Scholar 

  20. E.D. Spitzer and B. Weiss, The dna-707 mutation of Escherichia coli, Fed. Proc. 41: 1194 (1982).

    Google Scholar 

  21. B. Weiss, Exodeoxyribonucleases of Escherichia coli, p. 203-231, in: “The Enzymes,” vol. 14, P.D. Boyer, ed., Academic Press, New York (1981).

    Google Scholar 

  22. M. Goulian, B. Bleile, and B.Y. Tseng, Methotrexate-induced misincorporation of uracil into DNA, Proc. Natl. Acad. Sci. USA 77: 1956–1960 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Weiss, B., El-Hajj, H.H. (1986). The Repair of Uracil-Containing DNA. In: Simic, M.G., Grossman, L., Upton, A.C., Bergtold, D.S. (eds) Mechanisms of DNA Damage and Repair. Basic Life Sciences, vol 189. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9462-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9462-8_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9464-2

  • Online ISBN: 978-1-4615-9462-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics