Skip to main content

DNA Glycosylases in DNA Repair

  • Chapter
Mechanisms of DNA Damage and Repair

Part of the book series: Basic Life Sciences ((BLSC,volume 189))

Abstract

The excision of potentially mutagenic and lethal lesions from DNA proceeds by one of two different routes. DNA damage which results in a major distortion of the DNA double-helix is generally recognized by a high-molecular weight nuclease that cuts two phosphodiester bonds in the altered strand, one on each side of the lesion. While the biochemical properties of the complex E. coli enzyme catalyzing this reaction are being elucidated rapidly,1–3 the apparently analogous eukaryotic enzyme activity has not yet been demonstrated in a cell-free extract. The alternative pathway of excision-repair is initiated by one of several DNA glycosylases, which catalyze cleavage of the base-sugar bond of an altered nucleotide residue to release the damaged base component in free form and leave a repairable apurinic or apyrimidinic site in the DNA. The properties of DNA glycosylases have been reviewed.4–7 Some recent observations on the multiplicity and substrate specificity of these enzymes are discussed here; references to previous work may be found in the review cited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.B. Sancar, A. Sanear and W.D. Rupp. Sequences of the E. coli uvrC gene and protein. Nucl. Acids Res. 12: 4593 (1984).

    Article  CAS  Google Scholar 

  2. K. Kumura, M. Sekiguchi, A-L. Steinum and E. Seeberg. Stimulation of the UvrABC enzyme-catalyzed repair reactions by the UvrD protein (DNA helicase II) Nucl. Acids Res. 13: 1483 (1985).

    Article  CAS  Google Scholar 

  3. P.R. Caron, S.R. Kushner and L. Grossman. Involvement of helicase II (urvD) and DNA polymerase I in the excision process mediated by the uvrABC protein complex. Proc. Natl. Acad. Sci. USA, in press.

    Google Scholar 

  4. T. Lindahl. DNA glycosylases, endonucleases for apurinic/apyrimidinic sites, and base excision-repair, in Progr. Nucl. Acid Res. Mol. Biol. 20: 135 (1979).

    Article  Google Scholar 

  5. B.K. Duncan. DNA glycosylases, in The Enzymes Vol. XIV. Academic Press Inc., N.Y. (1981).

    Google Scholar 

  6. T. Lindahl. DNA repair enzymes. Ann. Rev. Biochem. 51: 61 (1982).

    Article  CAS  Google Scholar 

  7. E.C. Friedberg. DNA repair. W.H. Freeman & Co., N.Y. (1985).

    Google Scholar 

  8. S. Boiteux, O. Huisman and J. Laval. The EMBO J. 3: 2569 (1984).

    CAS  Google Scholar 

  9. K. Larson, J. Sahm, R. Shenkar and B. Strauss. Methylation-induced blocks to in vitro DNA replication. Mut. Res., in press (1985).

    Google Scholar 

  10. P. Karran, T. Hjelmgren and T. Lindahl. Induction of a DNA glycosylase for N-methylated purines is part of the adaptive response to alkylating agents. Nature 296: 770 (1982).

    Article  CAS  Google Scholar 

  11. N.D. Clarke, M. Kvaal and E. Seeberg. Cloning of Escherichia coli genes encoding 3-methyladenine DNA glycosylases I and II. Mol. Gen. Genet. 197: 368 (1984).

    Article  CAS  Google Scholar 

  12. S. Riazuddin and T. Lindahl. Properties of 3-methyladenine-DNA glycosylase from Escherichia coli. Biochemistry 17: 2110 (1978).

    Article  CAS  Google Scholar 

  13. L. Thomas, C.-H. Yang, and D.A. Goldthwait. Two DNA glycosylases in Escherichia coli which release primarily 3-methyladenine. Biochemistry 21: 1162 (1982).

    Article  CAS  Google Scholar 

  14. Y. Nakabeppu, H. Kondo and M. Sekiguchi. Cloning and characterization of the alkA gene of Escherichia coli that encodes 3-methyladenine DNA glycosylase II. J. Biol. Chem. 259: 13723 (1984).

    CAS  Google Scholar 

  15. T.V. McCarthy. P. Karran and T. Lindahl. Inducible repair of O-alkylated DNA pyrimidine Escherichia coli. EMBO J. 3: 545 (1984).

    CAS  Google Scholar 

  16. G. Evensen and E. Seeberg. Adaptation to alkylation resistance involves the induction of a DNA glycosylase. Nature 296: 773 (1982).

    Article  CAS  Google Scholar 

  17. P.E. Gallagher and T.P, Brent. Partial purification and characterization of 3-methyladenine-DNA glycosylase from human placenta. Biochemistry 21: 6404 (1982).

    Article  CAS  Google Scholar 

  18. R. Male, D.E. Heiland and K. Kleppe. Purification and characterization of 3-methyladenine-DNA glycosylase from calf thymus. J. Biol. Chem. 260: 1623 (1985).

    CAS  Google Scholar 

  19. J.A. Hall and P. Karran. Methylated pyrimidine lesions in the DNA of mammalian cells, in Repair of DNA lesions introduced by N-nitroso compounds, eds. H. Krokan and R. Myrnes. Oxford University Press, in press.

    Google Scholar 

  20. L.H. Breimer. Enzymatic excision from γ-irradiated polydeoxy-ribonucleotides of adenine residues whose imidazole rings have been ruptured. Nucl. Acids Res. 12: 6359 (1984).

    Article  CAS  Google Scholar 

  21. R. Teoule, C. Bert and A. Bonicel. Thymine fragment damage retained in the DNA polynucleotide chain after gamma irradiation in aerated solutions. II. Rad. Res 72: 190 (1977).

    Article  CAS  Google Scholar 

  22. L.H. Breimer and T. Lindahl. DNA glycosylase activities for thymine residues damaged by ring saturation, fragmentation, or ring contraction are functions of endonuclease III in Escherichia coli. J. Biol. Chem. 259: 5543 (1984); Thymine lesions produced by ionizing radiation in double-stranded DNA. Biochemistry, in press.

    CAS  Google Scholar 

  23. B. Demple and S. Linn. DNA N-glycosylases and UV repair. Nature 287: 203 (1980).

    Article  CAS  Google Scholar 

  24. H.L. Katcher and S.S. Wallace. Characterization of the Escherichia coli X-ray endonuclease, endonuclease III. Biochemistry 22: 4071 (1983).

    Article  CAS  Google Scholar 

  25. L.H. Breimer. Urea-DNA glycosylase in mammalian cells. Biochemistry 22: 4192 (1983).

    Article  CAS  Google Scholar 

  26. M.C. Hollstein, P. Brooks, S. Linn and B.N. Ames. Hydroxymethyluracil DNA glycosylase in mammalian cells. Proc. Natl. Acad. Sci. USA 81: 4003 (1984).

    Article  CAS  Google Scholar 

  27. R.P. Cunningham and B. Weiss. Endonuclease III (nth) mutants of Escherichia coli. Proc. Natl. Acad. Sci. USA 82: 474 (1985).

    Article  CAS  Google Scholar 

  28. P. Karran and T. Lindahl. Enzymatic excision of free hypoxanthine from polydeoxynucleotides and DNA containing deoxyinosine monophosphate residues. J. Biol. Chem. 253: 5877 (1978); P. Karran and T. Lindahl. Hypoxanthine in deoxyribonucleic acid: Generation by heat-induced hydrolysis of adenine residues and release in free form by a deoxyribonucleic acid glycosylase from calf thymus. Biochemistry 19:6005 (1980).

    CAS  Google Scholar 

  29. B. Myrnes, P-H. Guddal and H. Krokan. Metabolism of dITP in HeLa cell extracts, incorporation into DNA by isolated nuclei and release of hypoxanthine from DNA by a hypoxanthine-DNA glycosylase activity. Nucl. Acids Res. 10: 3693 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Lindahl, T. (1986). DNA Glycosylases in DNA Repair. In: Simic, M.G., Grossman, L., Upton, A.C., Bergtold, D.S. (eds) Mechanisms of DNA Damage and Repair. Basic Life Sciences, vol 189. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9462-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9462-8_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9464-2

  • Online ISBN: 978-1-4615-9462-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics