Skip to main content

Effects of LET on the Fate of DNA Damage Induced in Rabbit Sensory Cells In Situ: Fundamental Aspects

  • Chapter
Mechanisms of DNA Damage and Repair

Part of the book series: Basic Life Sciences ((BLSC,volume 189))

Abstract

For half a century, radiobiological theory was dominated by the notion that cellular radiosensitivity to ionizing radiations could be explained solely on the basis of the physics of energy deposition1,2. The process was extended even to explanations for the variation in relative biological effectiveness (RBE) with increased linear energy transfer (LET ) associated with densely-ionizing, particulate radiations3,4 In more recent years, examination of the radiation responses of the repair-deficient S/S variant of the L5178Y murine leukemic lymphoblast has demonstrated that radiobiological theories which do not incorporate metabolic modification of radiochemical damage are untenable2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. E. Lea, Actions of Radiations on Living Cells, Cambridge University Press, London (1946).

    Google Scholar 

  2. H. Nagasawa, A. B. Cox and J. T. Lett, The radiation responses of synchronous L5178Y S/S cells and their significance for radiobiological theory, Proc. Roy. Soc. Lond. B 211: 25 (1980).

    Article  CAS  Google Scholar 

  3. D. E. Lea, R. B. Haines and C. A. Coulson, Bactericidal action of radioactive radiations, Proc. Roy. Soc. Lond. B 120: 47 (1936).

    Article  Google Scholar 

  4. A. M. Kellerer and H. H. Rossi, The theory of dual radiation action, Curr. Top.Radiat. Res. Q 8: 85 (1972).

    CAS  Google Scholar 

  5. M. H. Rutledge and J. T. Lett, The L5178Y S/S murine leukemic lymphoblast: a radiosensitive, malignant cell of stable karyotype, Radiat. Res. 81: 282 (1980).

    Article  CAS  Google Scholar 

  6. J. T. Lett, D. S. Bergtold, A. B. Cox, P. C. Keng and R. Okayasu, Further evidence that the survival of irradiated mammalian cells is controlled by temporal processes, Br. J. Cancer 49, Suppl. VI: 163 (1984).

    Google Scholar 

  7. J. T. Lett, A. B. Cox and D. S. Bergtold, Cellular and tissue responses to heavy ions: basic considerations, Radiat. Environ. Biophys. (in press, 1985).

    Google Scholar 

  8. G. W. Barendson, Responses of cultured cells, tumours and normal tissues to radiations of different linear energy transfer, Curr. Top.Radiat. Res. Q. 4: 293 (1968).

    Google Scholar 

  9. E. A. Blakely, F. Q. H. Ngo, S. B. Curtis and C. A. Tobias, Heavyion radiobiology: cellular studies, in: “Advances in Radiation Biology,” J. T. Lett, ed., Academic Press, New York (1984).

    Google Scholar 

  10. J. Z. Beer, J. T. Lett and P. Alexander, Influence of temperature and medium on the X-ray sensitivities of leukaemia cells in vitro, Nature 199: 193 (1963).

    Article  CAS  Google Scholar 

  11. J. T. Lett, G. Parkins, P. Alexander and M. G. Ormerod, Mechanisms of sensitization to X-rays of mammalian cells by 5-bromo-deoxyuridine, Nature 203: 593 (1964).

    Article  CAS  Google Scholar 

  12. J. T. Lett, I. Caldwell, C. J. Dean and P. Alexander, Rejoining of X-ray induced strand breaks in the DNA of leukaemia cells, Nature 214: 790 (1967).

    Article  CAS  Google Scholar 

  13. P. Alexander, J. T. Lett and C. J. Dean, The role of postirradiation repair processes in chemical protection and sensitization, Progr. Biochem. Pharmacol. 1: 22 (1965).

    Google Scholar 

  14. M. N. Cornforth and J. S. Bedford, On the nature of a defect in cells from individuals with ataxia-telangiectasia, Science 227: 1589 (1985).

    Article  CAS  Google Scholar 

  15. M. N. Cornforth, Rejoining of X-ray induced chromosome breaks in human cells and its relationship to cellular repair, Doctoral Dissertation, Colorado State University (1985).

    Google Scholar 

  16. K. G. Hofer and R. L. Warters, Cell lethality after selective irradiation of the DNA replication fork, Radiat. Environ. Biophys. 24: 161 (1985).

    Article  CAS  Google Scholar 

  17. K. T. Wheeler, E. L. Pautler and J. T. Lett, Y-irradiation of photoreceptor cells in vivo: DNA repair and retinal function, Expt. Cell Res. 74: 281 (1972).

    Article  CAS  Google Scholar 

  18. K. T. Wheeler, R. E. Sheridan, E. L. Pautler and J. T. Lett, In vivo restitution of the DNA structure in gamma irradiated rabbit retinas, Radiat. Res. 53: 414 (1973).

    Article  CAS  Google Scholar 

  19. P. C. Keng, D. S. Bergtold and J. T. Lett, Effects of heavy ions on rabbit tissues: analysis of low levels of DNA damage in retinal photoreceptor cells, Int. J. Radiat. Biol. 43: 219 (1983).

    Article  CAS  Google Scholar 

  20. J. T. Lett, Measurement of single-strand breaks by sedimentation in alkaline sucrose gradients, in: “DNA Repair: a laboratory manual of research procedures, vol. 1, part B,” E. C. Friedberg and P. C. Hanawalt, eds., Marcel Dekker, Inc., New York (1981).

    Google Scholar 

  21. C. S. Lange, J. Ostashevsky, E. Perlmutter, J. DeLeon and G. Grossman, The use of viscoelastometry to determine survival curves for intact genomes, Radiat. Res. 100: 1 (1984).

    Article  CAS  Google Scholar 

  22. P. R. Cook and I. A. Brazell, Supercoils in human DNA, J. Cell Sci. 19: 261 (1975).

    CAS  Google Scholar 

  23. E. S. Chase and R. H. Shafer, Viscoelastic behavior of mammalian DNA, Biophys. J. 28: 93 (1979).

    Article  CAS  Google Scholar 

  24. K. L. W. Wun and R. H. Shafer, Structural changes in mammalian cell DNA induced by low-dose X-ray damage and subsequent postirradiation incubation in the presence and absence of caffeine, Radiat. Res. 90: 310 (1982).

    Article  CAS  Google Scholar 

  25. J. T. Lett, E. S. Klucis and C. Sun, On the size of the DNA in the mammalian chromosome: structural subunits, Biophys. J. 10: 277 (1970).

    Article  CAS  Google Scholar 

  26. J. T. Lett and C. Sun, The production of strand breaks in mammalian DNA by X-rays: at different stages in the cell cycle, Radiat. Res. 44: 771 (1970).

    Article  CAS  Google Scholar 

  27. A. Cole, F. Shonka, P. Corry and W. G. Cooper, CH0 cell repair of single-strand and double-strand DNA breaks by Y-and α-radiations, in “Molecular Mechanisms for Repair of DNA, part B,” P. C. Hanawalt and R. B. Setlow, eds., Plenum Press, New York (1978).

    Google Scholar 

  28. R. Datta, A. Cole and S. Robinson, Use of track-end alpha particles from 241Am to study radiosensitive sites in CHO cells, Radiat. Res. 65: 139 (1976).

    Article  CAS  Google Scholar 

  29. K. Regel, K. Gunther and G. Kampf, Some conclusions as to the in vivo organization of DNA in eukaryotic cells following from sedimentation studies after irradiation, Studia Biophys. 76: 11 (1979).

    CAS  Google Scholar 

  30. E. S. Klucis and J. T. Lett, Zonal centrifugation of mammalian DNA, Analyt. Biochem. 35: 480 (1970).

    Article  CAS  Google Scholar 

  31. J. T. Lett, Linkers in mammalian chromosomal DNA, in: “Aging Carcinogenesis and Radiation Biology,” K. C. Smith, ed., Plenum Press, New York (1976).

    Google Scholar 

  32. C. J. Dean, P. Feldschreiber and J. T. Lett, Repair of X-ray damage to the DNA in Micrococcus radiodurans, Nature 209: 49 (1966).

    Article  CAS  Google Scholar 

  33. D. S. Bergtold and J. T. Lett, Alterations in chromosomal DNA and aging: an overview, in: “Molecular Biology of Aging: Gene Stability and Gene Expression,” R. S. Sohal, L. Birnbaum and R. G. Cutler, eds., Raven Press, New York (in press, 1985).

    Google Scholar 

  34. K. T. Wheeler and J. T. Lett, On the possibility that DNA repair is related to age in non-dividing cells, Proc. Natl. Acad. Sci. USA, 71: 1862 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Lett, J.T., Bertold, D.S., Keng, P.C. (1986). Effects of LET on the Fate of DNA Damage Induced in Rabbit Sensory Cells In Situ: Fundamental Aspects. In: Simic, M.G., Grossman, L., Upton, A.C., Bergtold, D.S. (eds) Mechanisms of DNA Damage and Repair. Basic Life Sciences, vol 189. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9462-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9462-8_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9464-2

  • Online ISBN: 978-1-4615-9462-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics