Skip to main content

Neural, Endocrine, and Immune System Interactions

Relevance for Health and Disease

  • Chapter
Lacrimal Gland, Tear Film, and Dry Eye Syndromes 2

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 438))

Abstract

The integration of the central and peripheral nervous systems and the immune system has become a focal point in the understanding of human health and disease. The nervous system communicates with the immune system via the hypothalamo-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS). The immune system, particularly via proinflammatory cytokines such as IL-1, can, in turn, regulate CNS activity. That the nervous system can modulate immunity has been inferred from several lines of evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ader R, Cohen N. Psychoneuroimmunology: Conditioning and stress. Annu Rev Psychol. 1993; 44: 53–85.

    Article  PubMed  CAS  Google Scholar 

  2. Moynihan JA, Ader R. Psychoneuroimmunology: Animal models of disease. Psychosom Med., 1997; 58: 546–558.

    Google Scholar 

  3. Sheridan JF, Dobbs C, Brown D, Zwilling B. Psychoneuroimmunology: Stress effects on pathogenesis and immunity during infection. Clin Microbiol Rev. 1994; 7: 200–212.

    PubMed  CAS  Google Scholar 

  4. Keller SE. Weiss JM, Schleifer SJ, Miller NE, Stein M. Stress-induced immunosuppression of immunity in adrenalectomized rats. Science. 1983; 221: 1301–1304.

    Article  PubMed  CAS  Google Scholar 

  5. Okimura T, Ogawa M, Yamauchi T, Sasaki Y. Stress and immune responses. IV. Adrenal involvement of antibody responses in adrenalectomized rats. Jpn J Pharmacol. 1986; 41: 237–245.

    Article  PubMed  CAS  Google Scholar 

  6. Coe CL, Rosenberg LT, Fisher M, Levine S. Psychological factors capable of preventing the inhibition of antibody responses in separated infant monkeys. Child Dev. 1987; 58: 1420–1430.

    Article  PubMed  CAS  Google Scholar 

  7. Blecha F, Kelley KW, Satterlee DG. Adrenal involvement in the expression of delayed-type hypersensitivity to DNFB in mice. Proc Soc Exp Biol Med. 1982; 169: 247–252.

    PubMed  CAS  Google Scholar 

  8. Shavit Y. Stress-induced immunomodulation in animals: Opiates and endogenous opioid peptides. In: Ader R, Felten DL, Cohen N, eds. Psychoneuroimmunology, 2nd ed. New York: Academic Press; 1991: 789–806.

    Google Scholar 

  9. Shavit Y, Lewis JW, Terman GW, Gale RP, Liebeskind JC. Opioid peptides mediate the suppressive effects of stress on natural killer cell activity. Science. 1984; 223: 188–190.

    Article  PubMed  CAS  Google Scholar 

  10. Moynihan JA, Cohen N. Stress and immunity. In: Schneiderman N, McCabe P, Baum A, eds. Stress and Disease Processes: Perspectives in Behavioral Medicine. Hillsdale, New Jersey: Lawrence Erlbaum; 1992: 27–53.

    Google Scholar 

  11. Ben-Eliyahu S, Yirmiya R, Shavit Y, Liebeskind JC. Stress-induced suppression of natural killer cell cytotoxicity in the rat: A naltrexone-insensitive paradigm. Behav Neurosci. 1990; 104: 235–238.

    Article  PubMed  CAS  Google Scholar 

  12. Cunnick JE, Lysle DT, Armfield A, Rabin BS. Shock-induced modulation of lymphocyte responsiveness and natural killer cell activity: Differential mechanisms of induction. Brain Behav Immun. 1988; 2: 102–113.

    Article  PubMed  CAS  Google Scholar 

  13. Rabin BS, Cunnick JE, Lysle DT. Stress-induced alteration of immune function. Neuro Endocrin Immunol. 1990; 3: 116–124.

    Google Scholar 

  14. Khansari DN, Murgo AJ, Faith RE. Effects of stress on the immune system. Immunol Today. 1990; 11: 170–175.

    Article  PubMed  CAS  Google Scholar 

  15. Felten DL, Felten SY, Bellinger DL, et al. Noradrenergic sympathetic neural interactions with the immune system: Structure and function. Immunol Rev. 1987; 100: 225–260.

    Article  PubMed  CAS  Google Scholar 

  16. Felten SY, Felten DL, Bellinger DL, et al. Noradrenergic sympathetic innervation of lymphoid organs. Prog Allergy. 1988; 43: 14–36.

    PubMed  CAS  Google Scholar 

  17. Fuchs BA, Albright JW, Albright JF. β-Adrenergic receptors on murine lymphocytes: Density varies with cell maturity and lymphocyte subtype and is decreased after antigen administration. Cell Immunol. 1988; 114: 231–245.

    Article  PubMed  CAS  Google Scholar 

  18. Fuchs BS, Campbell K, Munson AE. Norepinephrine and serotonin content of the murine spleen: Its relationship to lymphocyte β-adrenergic receptor density and the humoral immune response in vivo and in vitro. Cell Immunol. 1988; 117: 339–351.

    Article  PubMed  CAS  Google Scholar 

  19. Bishopric NH, Cohen HJ, Lefkowitz RJ. Beta adrenergic receptors in lymphocyte subpopulations. J Allergy Clin Immunol. 1980; 65: 29–33.

    Article  PubMed  CAS  Google Scholar 

  20. Sanders VM, Powell-Oliver FE. β-Adrenoceptor stimulation increases the number of antigen-specific precursor B lymphocytes that differentiate into IgM-secreting cells without affecting burst size. J Immunol. 1992; 148: 1822–1828.

    PubMed  CAS  Google Scholar 

  21. Sanders VM, Munson AE. Beta adrenoceptor mediation of the enhancing effect of norepinephrine on the murine primary antibody response in vitro. J Pharmacol Exp Ther. 1984; 230: 183–192.

    PubMed  CAS  Google Scholar 

  22. Scott P. Selective differentiation of CD4+ T helper cell subsets. Curr Opin Immunol. 1993; 5: 391–397.

    Article  PubMed  CAS  Google Scholar 

  23. Paul WE, Seder RA. Lymphocyte responses and cytokines. Cell. 1994; 76: 241–251.

    Article  PubMed  CAS  Google Scholar 

  24. Lamont AG, Adorini L. IL-12: A key cytokine in immune regulation. Immunol Today. 1996; 17: 214–217.

    Article  PubMed  CAS  Google Scholar 

  25. Golding B, Zaitseva M, Golding H. The potential for recruiting immune responses toward type 1 or type 2 T cell help. Am J Trop Med Hyg. 1994;50 Suppl.:33–40.

    PubMed  CAS  Google Scholar 

  26. Bretscher PA, Wei G, Menjon JN, Bielefeldt-Ohmann H. Establishment of stable, cell-mediated immunity that makes ‘susceptible’ mice resistant to Leishmania major. Science. 1994; 257: 539–542.

    Article  Google Scholar 

  27. Brenner GJ, Cohen N, Moynihan JA. Similar immune responses to subcutaneous footpad infection with herpes simplex virus-1 in sensitive (BALB/c) and resistant (C57B1/6) strains of mice. Cell Immunol. 1994; 157: 510–524.

    Article  PubMed  CAS  Google Scholar 

  28. Belosevic M, Finbloom DS, van der Meade P, Slayter MV, Nacy CA. Administration of monoclonal antiIFN-γ antibodies in vivo abrogates natural resistance of C3H/HeN mice to infection with Leishmania major. J Immunol. 1989; 143: 266–274.

    PubMed  CAS  Google Scholar 

  29. Scott R IL-12: Initiation cytokine for cell-mediated immunity. Science. 1993; 260: 496–497.

    Article  PubMed  CAS  Google Scholar 

  30. Trinchieri G. Interleukin 12 and its role in the generation of Thl cells. Immunol Today. 1993; 14: 335–338.

    Article  PubMed  CAS  Google Scholar 

  31. Guler ML, Gorham JD, Hsieh C, et al. Genetic susceptibility to Leishmania: IL-12 responsiveness in Th1 cell development. Science. 1996; 271: 984–987.

    Article  PubMed  CAS  Google Scholar 

  32. Noben-Trauth N, Kropf P, Muller I. Susceptibility to Leishmania major infection in interleukin-4-deficient mice. Science. 1996; 271: 987–990.

    Article  PubMed  CAS  Google Scholar 

  33. Moynihan JA, Karp JD, Cohen N, Cocke R. Alterations in interleukin-4 and antibody production following pheromone exposure: Role of glucocorticoids. JNeuroimmunol. 1994; 54: 51–58.

    Article  CAS  Google Scholar 

  34. Moynihan JA, Brenner GJ, Cocke R, et al. Stress-induced modulation of immune function in mice. In: Glaser R, Kiecolt-Glaser JK, eds. Handbook of Human Stress and Immunity. New York: Academic Press, 1994: 1–22.

    Google Scholar 

  35. Liblau RS, Singer SM, McDevitt HO. Thl and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol Today. 1995; 16: 34–38.

    Article  PubMed  CAS  Google Scholar 

  36. Khoury SJ, Hancock WW, Weiner HL. Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor β, interleukin 4, and prostaglandin E expression in the brain. J Exp Med. 1992; 176: 1355–1364.

    Article  CAS  Google Scholar 

  37. Kennedy MK, Torrance DS, Picha KS, Mohler KM. Analysis of cytokine mRNA in the central nervous system of mice with experimental autoimmune encephalomyelitis reveals that IL-10 mRNA expression correlates with recovery. J Immunol. 1992; 149: 2496–2505.

    PubMed  CAS  Google Scholar 

  38. MacPhee IAM, Day MJ, Mason DW. The role of serum factors in the suppression of experimental autoimmune encephalomyelitis: Evidence for immunoregulation by antibody to the encephalitogenic peptide. Immunology. 1992; 70: 527–534.

    Google Scholar 

  39. Levine S, Strebel R, Wenk EJ, Harman PJ. Suppression of experimental allergic encephalomyelitis by stress. Proc Soc Exp Biol Med. 1962; 109: 294–298.

    PubMed  CAS  Google Scholar 

  40. Griffin AC, Lo WD, Wolny AC, Whitacre CC. Suppression of experimental allergic encephalomyelitis by restraint stress: Sex differences. JNeuroimmunol. 1993; 44: 103–116.

    Article  CAS  Google Scholar 

  41. Kuroda Y, Mori T, Hori T. Restraint stress suppresses experimental allergic encepthalomyelitis. Brain Res Bull. 1994; 34: 15–17.

    Article  PubMed  Google Scholar 

  42. Levine S, Saltzman A. Nonspecific stress prevents relapse in experimental allergic encephalomyelitis. Brain Behav Immun. 1987; 1: 336–341.

    Article  PubMed  CAS  Google Scholar 

  43. Bukilica M, Djordjevic S, Maric I, Dimitrijevic M, Markovic BM, Jankovic BD. Stress-induced suppression of experimental allergic encephalomyelitis in the rat. hit J Neurosci. 1991; 59: 167–175.

    CAS  Google Scholar 

  44. McCombe PA, deJersey J, Pender MP. Inflammatory cells, microglia, and MHC class II antigen-positive cells in the spinal cord of Lewis rats with acute and chronic relapsing experimental allergic encephalomyelitis. JNeuroimmunol. 1992; 149: 2496–2505.

    Google Scholar 

  45. Chelmicka-Schorr E, Kwasniewski MN, Wollmann RL. Sympathectomy augments adoptively transferred experimental allergic encephalomyelitis. JNeuroimmunol. 1992; 37: 99–103.

    Article  CAS  Google Scholar 

  46. Mason DM, MacPhee IAM, Antoni F. The role of the neuroendocrine system in determining genetic susceptibility to experimental allergic encephalomyelitis in the rat. Immunology. 1992; 70: 1–5.

    Google Scholar 

  47. Jankovic BD, Maric D. Enkephalins and autoimmunity: Differential effect of methionine-enkephalin on experimental allergic encephalomyelitis in Wistar and Lewis rats. J Neurosci Res. 1987; 18: 88–94.

    Article  PubMed  CAS  Google Scholar 

  48. Chelmicka-Schorr E, Checinski M, Amason BGW. Chemical sympathectomy augments the severity of experimental allergic encephalomyelitis. J Neumimmunol. 1988; 17: 347–350.

    Article  CAS  Google Scholar 

  49. Doutlik S, Kutinova L, Benda R, et al. Some immunological characteristics of subjects suffering from frequent herpes simplex virus recrudescences. Acta Virol. 1989; 33: 435–445.

    PubMed  CAS  Google Scholar 

  50. Bonneau RH, Sheridan JF, Feng N, Glaser R. Stress-induced suppression of herpes simplex virus (HSV)specific cytotoxic T lymphocyte and natural killer cell activity and enhancement of pathogenesis following local HSV infection. Brain Behav Immun. 1991; 5: 170–192.

    Article  PubMed  CAS  Google Scholar 

  51. Kusnecov AV, Grota LJ, Schmidt SG, et al. Alterations in herpes virus immunity and clearance following stressor administration in mice. J Neuroimmunol. 1992; 38: 129–138.

    Article  PubMed  CAS  Google Scholar 

  52. Kruszewska B, Felten SY, Moynihan JA. Sympathectomy increases Th1 andTh2 cytokine production and antibody production in BALB/c and C57BI/6 mice. J Immunol. 1995; 155: 4613–4620.

    PubMed  CAS  Google Scholar 

  53. Zierhut M, Bieber T, Brocker EB, Forrester JV, Foster CS, Streilein JW. Immunology of the skin and eye. Immunol Today. 1996; 17: 448–450.

    Article  PubMed  CAS  Google Scholar 

  54. Kelleher RS, Hann LE, Edwards JA, Sullivan DA. Endocrine, neural, and immune control of secretory component output by lacrimal gland acinar cells. J Immunol. 1991; 146: 3405–3412.

    PubMed  CAS  Google Scholar 

  55. Sullivan DA. Ocular mucosal immunity. In: Sullivan DA, ed. Handbook of Mucosal Immunity. New York: Academic Press; 1994: 569–597.

    Google Scholar 

  56. Hosoya Y, Matsushita M, Sugiura Y. A direct hypothalamic projection to the superior salivatory nucleus neurons in the rat: A study using anterograde autoradiographic and retrograde HRP methods. Brain Res. 1983; 266: 329–333.

    Article  PubMed  CAS  Google Scholar 

  57. Walcott B, Cameron RH, Brink PR. The anatomy and innervation of lacrimal glands. Adv Exp Med Biol. 1994; 350: 11–18.

    Article  PubMed  CAS  Google Scholar 

  58. Sullivan DA, Hann LE, Soo CH, Yee L, Edwards JA, Allansmith MR. Neural-immune interrelationship: Effect of optic, sympathetic, temporofacial, or sensory denervation on the secretory immune system of the lacrimal gland. Reg Immunol. 1991; 3: 204–212.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moynihan, J.A., Kruszewska, B., Brenner, G.J., Cohen, N. (1998). Neural, Endocrine, and Immune System Interactions. In: Sullivan, D.A., Dartt, D.A., Meneray, M.A. (eds) Lacrimal Gland, Tear Film, and Dry Eye Syndromes 2. Advances in Experimental Medicine and Biology, vol 438. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5359-5_77

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5359-5_77

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7445-9

  • Online ISBN: 978-1-4615-5359-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics