Skip to main content

Long-chain fatty acid transport in bacteria and yeast. Paradigms for defining the mechanism underlying this protein-mediated process

  • Chapter
Lipid Binding Proteins within Molecular and Cellular Biochemistry

Part of the book series: Molecular and Cellular Biochemistry ((DMCB,volume 29))

Abstract

Protein-mediated transport of exogenous long-chain fatty acids across the membrane has been defined in a number of different systems. Central to understanding the mechanism underlying this process is the development of the appropriate experimental systems which can be manipulated using the tools of molecular genetics. Escherichia coli and Saccharomyces cerevisiae are ideally suited as model systems to study this process in that both [1] exhibit saturable long-chain fatty acid transport at low ligand concentration; [2] have specific membrane-bound and membrane-associated proteins that are components of the transport apparatus; and [3] can be easily manipulated using the tools of molecular genetics. In E. coli, this process requires the outer membrane-bound fatty acid transport protein FadL and the inner membrane associated fatty acyl CoA synthetase (FACS). FadL appears to represent a substrate specific channel for long-chain fatty acids while FACS activates these compounds to CoA thioesters thereby rendering this process unidirectional. This process requires both ATP generated from either substrate-level or oxidative phosphorylation and the proton electrochemical gradient across the inner membrane. In S. cerevisiae, the process of long-chain fatty acid transport requires at least the membrane-bound protein Fatlp. Exogenously supplied fatty acids are activated by the fatty acyl CoA synthetases Faalp and Faa4p but unlike the case in E. coli, there is not a tight linkage between transport and activation. Studies evaluating the growth parameters in the presence of long-chain fatty acids and long-chain fatty acid transport profiles of a fatlΔ strain support the hypothesis that Fatlp is required for optimal levels of long-chain fatty acid transport. (Mol Cell Biochem 192: 41–52, 1999)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carmen GM, Zeimetz GM: Regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae. J Biol Chem 271: 13293–13296, 1996

    Article  Google Scholar 

  2. Greenberg ML, Lopes JM: Genetic regulation of phospholipid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev 60: 1–20, 1996

    PubMed  CAS  Google Scholar 

  3. Hillgartner FB, Salati LM, Goodridge AG: Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis. Physiol Rev 25: 47–76, 1995

    Google Scholar 

  4. Paltauf BL, Kohlwein SD, Henry SA: Regulation and compart-mentalization of lipid synthesis in yeast. In: E.W. Jones, J.R. Pringle, J.R. Broach (eds). The Molecular and Cellular Biology of the Yeast Saccharomyces cerevisiae: Gene Expression. Cold Spring Harbor Press, Cold Spring Harbor, NY, 1992, pp415–500

    Google Scholar 

  5. Glick BS, Rothman JE: Possible role for fatty acyl-coenzyme A in intracellular protein transport. Nature 326: 309–312, 1987

    Article  PubMed  CAS  Google Scholar 

  6. Pfanner N, Orci L, Glick BS, Amherdt M, Ardern SR, Malhotra V, Rothman JE: Fatty acyl-coenzyme A is required for budding of transport vesicles from Golgi cistemae. Cell 59: 95–102, 1989

    Article  PubMed  CAS  Google Scholar 

  7. Gordon JI, Duronio RS, Rudnick DA, Adams SP, Gokel GW: Protein N-myristoylation. J Biol Chem 266: 8647–8650, 1991

    PubMed  CAS  Google Scholar 

  8. McLaughlin S, Aderem A: The myristoyl-electrostatic switch: A modulator of reversible protein-membrane interactions. TIBS 20: 270–276, 1995

    Google Scholar 

  9. Schneiter R, Kohlwein SD: Organelle structure, function and inheritance in yeast: A role for fatty acid synthesis? Cell 88: 431–434, 1997

    Article  PubMed  CAS  Google Scholar 

  10. Fujimoto Y, Tsunomori M, Sumiya T, Nishida H, Sakuma S, Fujita T: Effects of fatty acyl coenzyme A esters on lipoxygenase and cyclooxygenase metabolism of arachidonic acid in rabbit platelets. Prostaglandins Leuko Essen Fatty Acids 52: 255–258, 1995

    Article  CAS  Google Scholar 

  11. Fulceri R, Gamberucci A, Scott HM, Giunti R, Burchell A, Benedetti A: Fatty acyl-CoA esters inhibit glucose-6-phosphatase in rat liver microsomes. Biochem J 307: 391–397, 1995

    PubMed  CAS  Google Scholar 

  12. Lai JCK, Liang BB, Jam EL, Cooper AJL, Lu DR: Differential effects of fatty acyl coenzyme A derivatives on citrate synthase and glutamate dehydrogenase. Res Com Chem Pathol Pharm 82: 331–338, 1993

    CAS  Google Scholar 

  13. Yamashita A, Watanabe M, Tonegawa T, Sugiura T, Waku K: Acyl-CoA binding and acylation of UDP-glucuronosyltransferase isoforms of rat liver: Their effect on enzyme activity. Biochem J 312: 301–308, 1995

    PubMed  CAS  Google Scholar 

  14. Aihaud GR, Abumrad NA, Amri E-Z, Grimaldi PA: Anew look at fatty acids as signal-transducing molecules. In: G.C. Simopoulos, E. Tremoli (eds). Fatty Acids and Lipids: Biological Aspects. Karger Press, Basel, Switzerland, 1994

    Google Scholar 

  15. Glatz JE, Borchers T, Spener E, van der Vusse, GJ: Fatty acids in cell signaling: Modulation by lipid binding proteins. Prostaglandins Leuko Essen Fatty Acids 52: 121–127, 1995

    Article  CAS  Google Scholar 

  16. Korchak HM, Kane LH, Rossi MW, Corkey BE: Long-chain acyl coenzyme A and signaling in neutrophils. An inhibitor of acyl coenzyme A synthetase, triacsin C, inhibits Superoxide anion generation and degranulation by human neutrophils. J Biol Chem 269: 30281–30287, 1994

    PubMed  CAS  Google Scholar 

  17. Shrago E, Woldegiorgis G, Ruoho AE, DiRusso CC: Fatty acyl CoA esters as regulators of cell metabolism. Prostaglandins Leuko Essen Fatty Acids 52: 163–166, 1995

    Article  CAS  Google Scholar 

  18. Rich GT, Comerford JG, Graham S, Dawson AP: Effects of CoA and acyl-CoA on Ca2+ permeability of endoplasmic-reticulum membranes from rat liver. Biochem J 306: 703–708, 1995

    PubMed  CAS  Google Scholar 

  19. DiRusso CC: The role of long-chain acyl-CoA esters in the regulation of gene expression and metabolism. In: J.Y. Vanderhoek (ed). Escherichia coli. Frontiers in Bioactive Lipids. Plenum Press, NY, 1995, pp 15–22

    Google Scholar 

  20. DiRusso CC, Heimert TL, Metzger AK: Characterization of Fad R, a global transcriptional regulator of fatty acid metabolism in Escherichia coli. J Biol Chem 267: 8685–8691, 1992

    PubMed  CAS  Google Scholar 

  21. DiRusso CC, Metzger AK, Heimert TL: Regulation of transcription of genes required for fatty acid transport and unsaturated fatty acid biosynthesis mEscherichia coli by Fad R. Mol Microbiol 7: 311–322, 1993

    Article  PubMed  CAS  Google Scholar 

  22. Raman N, DiRusso CC: Analysis of acyl coenzyme A binding to the transcription factor FadR and identification of amino acid residues required for ligand binding. J Biol Chem 270: 1092–1097, 1995

    Article  PubMed  CAS  Google Scholar 

  23. DiRusso CC, Nystom T: The fats of Escherichia coli during infancy and old age. Mol Microbiol 27: 1–8, 1998

    Article  PubMed  CAS  Google Scholar 

  24. Abumrad NA, Forest CC, Regen DM, Sanders S: Increase in membrane uptake of long-chain fatty acids early during preadipocyte differentiation. Proc Nat Acad Sci USA 88: 6008–6012, 1991

    Article  PubMed  CAS  Google Scholar 

  25. Abumrad NA, El-Maghrabi MR, Amri E-Z, Lopez E, Crimaldi PA: Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. J Biol Chem 268: 17665–17668, 1993

    PubMed  CAS  Google Scholar 

  26. Harmon CM, Abumrad NA: Binding of sulfosuccinimidyl fatty acid to adipocyte membrane proteins: Isolation and amino-terminal sequence of an 88-kD protein implicated in transport of long-chain fatty acid. J Membr Biol 133: 43–49, 1993

    PubMed  CAS  Google Scholar 

  27. Schaffer JE, Lodish HF: Expression cloning and characterization of a novel adipocyte long-chain fatty acid transport protein. Cell 79: 427–436, 1994

    Article  PubMed  CAS  Google Scholar 

  28. Schaffer JE, Lodish HF: Molecular mechanism of long-chain fatty acid uptake. Trends Cardiovasc Med 5: 218–224, 1995

    Article  PubMed  CAS  Google Scholar 

  29. Berk PD, Wada H, Horio Y, Potter BL, Sorrentino D, Zhou SL, Isola LM, Stump D, Kiang CL, Thung S: Plasma membrane fatty acid binding protein and mitochondrial glutamic-oxaloacetic transaminase of rat liver are related. Proc Nat Acad Sci USA 87: 3484–3488, 1990

    Article  PubMed  CAS  Google Scholar 

  30. Zhou S-L, Stump D, Isola LM, Berk PD: Constitutive expression of a saturable transport system for non-esterified fatty acids in Xenopus laevis oocytes. Biochem J 297: 315–319, 1994

    PubMed  CAS  Google Scholar 

  31. Zhou S-L, Stump D, Kiang C-L, Isola LM, Berk PD: Mitochondrial aspartate aminotransferase expressed on the surface of 3T3-L1 adipocytes mediates saturable fatty acid uptake. Proc Soc Exp Biol Med 208: 263–270, 1995

    PubMed  CAS  Google Scholar 

  32. Black PN: Primary sequence of the Escherichia colifadL gene encoding an outer membrane protein involved in fatty acid transport. J Bacteriol 173: 535–542, 1991

    Google Scholar 

  33. Black PN: Characterization of FadL-specific fatty acid binding in Escherichia coli. Biochim Biophys Acta 1046: 97–105, 1990

    Article  PubMed  CAS  Google Scholar 

  34. Black PN, DiRusso CC: Molecular and biochemical analyses of fatty acid transport, metabolism, and gene regulation in Escherichia coli. Biochim Biophys Acta 1210: 123–145, 1994

    Google Scholar 

  35. Black PN, DiRusso CC, Metzger AK, Heimert TL: Cloning, sequencing, and characterization of the fadD gene of Escherichia coli encoding fatty acyl coenzyme A synthetase. J Biol Chem 267: 25513–25520, 1992

    PubMed  CAS  Google Scholar 

  36. Black PN: Acyl-CoA synthetase and the transport of long-chain fatty acids. In: J.Y. Vanderhoek (ed). Frontiers in Bioactive Lipids. Plenum Press, NY, 1996, pp 7–14

    Chapter  Google Scholar 

  37. Black PN, Zhang Q, Weimar JD, DiRusso CC: Mutational analysis of a fatty acyl-coenzyme A synthetase signature motif identifies seven amino acid residues that modulate fatty acid substrate specificity. J Biol Chem 272: 4896–4903, 1997

    Article  PubMed  CAS  Google Scholar 

  38. Kumar GB, Black PN: Linker mutagenesis of a bacterial fatty acid transport protein. Identification of domains with functional importance. J Biol Chem 266: 1348–1353, 1991

    PubMed  CAS  Google Scholar 

  39. Kumar GB, Black PN: Bacterial long-chain fatty acid transport: Identification of amino acid residues within the outer membrane protein FadLrequired for activity. J Biol Chem 268: 15469–15476, 1993

    PubMed  CAS  Google Scholar 

  40. Black PN, Zhang Q: Evidence that His110 of protein FadL in the outer membrane of Echerichia coli is involved in the binding and uptake of long-chain fatty acids. Possible role of this residue in carboxylate binding. Biochem J 310: 389–394, 1995

    PubMed  CAS  Google Scholar 

  41. Færgeman NL, DiRusso CC, Elberger A, Knudsen L, Black PN: Disruption of the Saccharomyces cerevisiae homologue to the murine fatty acid transport protein impairs uptake and growth on long-chain fatty acids. J Biol Chem 272: 8531–8538, 1997

    Article  PubMed  Google Scholar 

  42. Overath P, Pauli G, Schairer HU: Fatty acid degradation in Escherichia coli. An inducible acyl-CoA synthetase, the mapping of old mutants, and isolation of regulatory mutants. Eur J Biochem 7: 559–574, 1969

    Article  PubMed  CAS  Google Scholar 

  43. Azizan A, Black PN: Use of transposon ThphoA to identify genes for cell envelope proteins of Escherichia coli required for long-chain fatty acid transport: The periplasmic protein Tsp potentiates long-chain fatty acid transport. J Bacteriol 176: 6653–6662, 1994

    PubMed  CAS  Google Scholar 

  44. Kameda K: Partial purification and characterization of fatty acid binding protein(s) in Escherichia coli membranes and reconstitution of fatty acid transport system. Biochem Int 13: 343–350, 1986

    PubMed  CAS  Google Scholar 

  45. Kameda K, Suzuki LK, Imai Y: Transport of fatty acid is obligatory coupled with H+ entry in pheroplasts of Echerichia coli K-12. Biochem Int 14: 227–234, 1987

    PubMed  CAS  Google Scholar 

  46. Nunn WD, Simons RW: Transport of long-chain fatty acids by Escherichia coli: Mapping and characterization of mutants in the fadL gene. Proc Nat Acad Sci USA 75: 3377–3381, 1978

    Article  PubMed  CAS  Google Scholar 

  47. Nunn WD, Simons RW, Egan PA, Maloy SR: Kinetics of the utilization of medium and long chain fatty acids by a mutant of Escherichia coli defective infadl gene. J Biol Chem 254: 9130–9134, 1979

    PubMed  CAS  Google Scholar 

  48. Maloy SR, Ginsburgh CL, Simons RW, Nunn WD: Transport of long and medium chain fatty acids by Escherichia coli K12. J Biol Chem 256: 3735–3742, 1981

    PubMed  CAS  Google Scholar 

  49. Black PN: The fadL gene product of Escherichia coli is an outer membrane protein required for uptake of long-chain fatty acids and involved in sensitivity to bacteriophage T2. J Bacteriol 170: 2850–2854, 1988

    PubMed  CAS  Google Scholar 

  50. Azizan A, Sherin D, DiRusso CC, Black PN: Energetics underlying the process of long-chain fatty acid transport: The roles of ATP synthase and an energized membrane (submitted)

    Google Scholar 

  51. Mangroo D, Gerber GE: Fatty acid uptake in Escherichia coli: Regulation by recruitment of fatty acyl CoA synthetase to the plasma membrane. Biochem Cell Biol 71: 431–443, 1993

    Article  Google Scholar 

  52. Berger EA: Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli. Proc Nat Acad Sci USA 70: 1514–1518, 1973

    Article  PubMed  CAS  Google Scholar 

  53. Berger EA, Heppel LA: Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli. J Biol Chem 249: 7747–7755, 1974

    PubMed  CAS  Google Scholar 

  54. Kohlwein SD, Paltauf F: Uptake of fatty acids by the yeasts Saccharomyces warum and Saccharomycopsis lipolytica. Biochim Biophys Acta 792: 310–317, 1983

    Google Scholar 

  55. Knoll LL, Johnson DR, Gordon JI: Complementation of Saccharomyces cerevisiae strains containing fatty acid activation gene (FAA) deletions with a mammalian acyl CoA synthetase. J Biol Chem 270: 10861–10867, 1995

    Article  PubMed  CAS  Google Scholar 

  56. Johnson DR, Knoll LL, Levin DE, Gordon JI: Saccharomyces cerevisiae contains four fatty acid activation (FAA) genes: As assessment of their role in regulating protein N-myristoylation and cellular lipid metabolism. J Cell Biol 127: 751–762, 1994

    Article  PubMed  CAS  Google Scholar 

  57. Knoll LJ, Johnson DR, Gordon JI: Biochemical studies of three Saccharomyces cerevisiae acyl-CoA synthetases, Faalp, Faa2p, and Faa3p. J Biol Chem 269: 16348–16356, 1994

    PubMed  CAS  Google Scholar 

  58. Rasmusen JT, Færgeman NL, Kristiansen K, Knudsen J: Acyl-CoA binding protein (ACBP) can mediate intermembrane transport and donate acyl-CoA for beta-oxidation and glycerolipid synthesis. Biochem J 299: 165–170, 1994

    Google Scholar 

  59. Andreasen AA, Stier TJB: Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. J Cell Comp Physiol 41: 23–26, 1953

    Article  CAS  Google Scholar 

  60. Bourot S, Karst F: Isolation and characterization of the Saccharomyces cerevisiae SUT1 gene involved in sterol uptake. Gene 165: 97–102, 1995

    Article  PubMed  CAS  Google Scholar 

  61. Sallus L, Haselbeck RL, Nunn WD: Regulation of fatty acid transport in Escherichia coli: Analysis by operon fusion. J Bacteriol 155: 1450–1454, 1983

    PubMed  CAS  Google Scholar 

  62. Higashitani HA, Nishimura Y, Hara H, Aiba H, Mizuno T, Horiuchi K: Osmoregulation of the fatty acid receptor gene fadL in Escherichia coli. Mol Gen Genet 240: 339–347, 1993

    PubMed  CAS  Google Scholar 

  63. Mahan ML, Tobias JW, Slauch JM, Hanna PC, Collier RL, Mekalanos JJ: Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host. Proc Nat Acad Sci USA 92: 669–673, 1995

    Article  PubMed  CAS  Google Scholar 

  64. Pace L, Hayman ML, Galan JE: Signal transduction and invasion of epithelial cells by S. typhimurium. Cell 72: 505–514, 1993

    Article  PubMed  CAS  Google Scholar 

  65. Paltauf BL, Kohlwein SD, Henry SA: Regulation and compart-mentalization of lipid synthesis in yeast. In: E.W. Jones, J.R. Pringle, J.R. Broach (eds). The Molecular and Cellular Biology of the Yeast Saccharomyces cerevisiae: Gene expression. Cold Spring Harbor Press, Cold Spring Harbor, NY, 1992, pp 415–500

    Google Scholar 

  66. Elgersma Y, Tabak HF: Proteins involved in peroxisome biogenesis and functioning. Biochim Biophys Acta 1286: 269–283, 1996

    Article  PubMed  CAS  Google Scholar 

  67. Hiltunen JK, Wenzel B, Beyer A, Erdman R, Fossa A, Kunau W: Peroxisomal multifunctional beta-oxidation protein of Saccharomyces cerevisiae. Molecular analysis of the fox2 gene and gene product. J Biol Chem 267: 6646–6653, 1992

    PubMed  CAS  Google Scholar 

  68. Karlskov Schjerling C, Hummel R, Hansen JK, Børsting C, Mikkelsen JM, Kristiansen K, Knudsen J: Disruption of the gene encoding the acyl CoA binding protein (ACB1) perturbs acyl-CoA metabolism in Saccharomyces cerevisiae. J Biol Chem 37: 22514–22521, 1996

    Google Scholar 

  69. Rasmusen JT, Rosendal J, Knudsen J: Interaction of acyl-CoA binding protein (ACBP) on processes for which acyl-CoA is a substrate, product, or inhibitor. Biochem J 292: 907–913, 1993

    Google Scholar 

  70. Hettema EH, van Roermund CWT, Distel B, van den Berg M, Vilela C, Rodrigues-Pousada C, Wanders RJA, Tabak HF: The ABC transporter proteins Pat 1 and Pat2 are required for import of long-chain fatty acids into peroxisomes of Saccharomyces cerevisiae. EMBO J 15: 3813–3822, 1996

    PubMed  CAS  Google Scholar 

  71. Lombard-Platet G, Savary S, Sarde CO, Mandel JL, Chimini G: A close relative of the adrenoleukodystrophy (ADL) gene codes for a peroxisomal protein with a specific expression pattern. Proc Nat Acad Sci USA 93: 1265–1269, 1996

    Article  PubMed  CAS  Google Scholar 

  72. Shani N, Valle D: A Saccharomyces cerevisiae homolog of the human adrenoleukodystrophy transporter is a heterodimer of two half ATP-binding cassette transporters. Proc Nat Acad Sci USA 93: 11901–11906, 1996

    Article  PubMed  CAS  Google Scholar 

  73. Blobel F, Erdman R: Identification of a yeast peroxisomal member of AMP binding proteins. Eur J Biochem 240: 468–476, 1996

    Article  PubMed  CAS  Google Scholar 

  74. Frayn KN, Shadid S, Hamlani R, Humphreys SM, Clark ML, Fielding BA, Boland O, Coppack SW: Regulation of fatty acid movement in human adipose tissue in the postabsorptive-to-postprandial transition. Am J Physiol 266: E308–E317, 1994

    PubMed  CAS  Google Scholar 

  75. Gonzalez CI, Martin CE: Fatty Acid-responsive control of mRNA stability. J Biol Chem 271: 25801–25809, 1996

    Article  PubMed  CAS  Google Scholar 

  76. Jump DB, Clarke SD, Thelen A, Liimatta M: Coordinate regulation of glycolytic and lipogenic gene expression by polyunsaturated fatty acids. J Lipid Res 35: 1076–1084, 1994

    PubMed  CAS  Google Scholar 

  77. Cornelius P, MacDougal OA, Lane MD: Regulation of adipocyte development. Annu Rev Nutr 14: 99–129, 1994

    Article  PubMed  CAS  Google Scholar 

  78. Grimaldi PA, Gaillard D, Inadera H, Teboul L, Ailhaud G, Amri E-Z: Molecular mechanisms involved in the adipogenic action of fatty acids. In: J.Y. Vanderhoek (ed). Frontiers in Bioactive Lipids. 1996, pp 1–6

    Google Scholar 

  79. Einerhand AW, Kos W, Distel D, Tabak HF: Characterization of a transcriptional control element involved in the proliferation of peroxisomes in yeast in response to oleate. Eur JBiochem 214: 323–331, 1993

    Article  CAS  Google Scholar 

  80. Burczynski FL, Cai ZS, Moran JB, Geisbuhler T, Rovetto M: Palmitate uptake by cardiac myocytes and endothelial cells. Am J Physiol 268: H1659–H1666, 1995

    PubMed  CAS  Google Scholar 

  81. Lopaschuk GD, Collins-Nakai RL, Itoi T: Developmental changes in energy substrate use by the heart. Cardio Res 26: 1172–1180, 1992

    Article  CAS  Google Scholar 

  82. Schulz H: Regulation of fatty acid oxidation in the heart. J Nutr 124: 165–171, 1994

    PubMed  CAS  Google Scholar 

  83. Van Nieuwenhoven FA, Verstijnen CP, Abumrad NA, Willemsen PF, Van Eys GL, Van der Vusse GL, Glatz JF: Putative fatty acid translocase and cytoplasmic fatty acid binding protein am co-expressed in rat heart and skeletal muscles. Biochem Biophys Res Comm 207: 747–752, 1995

    Article  PubMed  Google Scholar 

  84. Vork MM Glatz JFC van der Vusse On the mechanism of long chain fatty acid transport in cardiomyocytes as facilitated by cytoplasmic fatty acid binding protein. J Theor Biol 160 207–222 1993

    Google Scholar 

  85. Franken PR, De Geeter E, Dendale P, Block P, Bossuyt A: Abnormal free fatty acid uptake in subacute myocardial infarction after coronary thrombolysis: Correlation with wall motion and inotropic reserve. J Nucl Med 35: 1758–1765, 1994

    PubMed  CAS  Google Scholar 

  86. Siguel EN, Lerman RH: Altered fatty acid metabolism in patients with angiographically documented coronary artery disease. Metab Clin Exp 43: 982–993, 1994

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

DiRusso, C.C., Black, P.N. (1999). Long-chain fatty acid transport in bacteria and yeast. Paradigms for defining the mechanism underlying this protein-mediated process. In: Banaszak, L., Bernlohr, D.A. (eds) Lipid Binding Proteins within Molecular and Cellular Biochemistry. Molecular and Cellular Biochemistry, vol 29. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4929-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4929-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7236-3

  • Online ISBN: 978-1-4615-4929-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics