Skip to main content

GABAB Receptors and Supraoptic Neuronal Activity

  • Chapter
Vasopressin and Oxytocin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 449))

Abstract

The magnocellular neurohypophysial neurons of the supraoptic and paraventricular nucleus are possibly the most studied and best described peptidergic neurons in the mammalian brain. Throughout the 1960’s and 1970’s, an extensive series of investigations began to characterize the activity patterns of the vasopressinergic and oxytocinergic neurons which comprise this system10. Such studies, which continue to this day, have revealed unique and characteristic activity patterns which are displayed by these cells and which are associated with particular secretion patterns for each peptide (reviewed in25,28). Thus, oxytocin neurons are known to respond to such stimuli as increased osmolarity with small increases in spontaneous firing rate, whereas during lactation, these same cells display explosive bursts of activity associated with release of a bolus of oxytocin into the circulation to cause contraction of mammary smooth muscle and milk letdown. In contrast, vasopressinergic neurons respond with increases of activity to both reductions in blood pressure and to increases in osmolarity; the overall increased level of activity is often associated with a very characteristic, phasic activity pattern. Although both oxytocin and vasopressin neurons appear to possess intrinsic sensitivity to osmotic stimuli1,24, it is apparent that these cells are synaptically regulated by afferents arising from a large number of limbic and sensory structures28,29,33.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bourque C.W. and Oliet S.H. (1997) Osmoreceptors in the central nervous system. Annual Review of Physiology 59, 601–619.

    Article  PubMed  CAS  Google Scholar 

  2. Bowery N.G., Hudson A.L. and Price G.W. (1987) GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience 20, 365–383.

    Article  PubMed  CAS  Google Scholar 

  3. Carr K.D. (1996) Feeding, drug abuse, and the sensitization of reward by metabolic need. Neurochem Res 21, 1455–1467.

    Article  PubMed  CAS  Google Scholar 

  4. Chu D.M., Albin R.L., Young A.B. and Penny J.B. (1990) Distribution and kinetics of GABAB binding sites in rat central nervous system: a quantitative autoradiographic study. Neuroscience 34, 341–357.

    Article  PubMed  CAS  Google Scholar 

  5. Decavel C. and Curras M.C. (1997) Increased expression of the N-methyl-D-aspartate receptor subunit, NRI, in immunohistochemically identified magnocellular hypothalamic neurons during dehydration. Neuroscience 78, 191–202.

    Article  PubMed  CAS  Google Scholar 

  6. Decavel C. and Van den Pol A.N. (1990) GABA: a dominant neurotransmitter in the hypothalamus. J Comp Neural 302, 1019–1037.

    Article  CAS  Google Scholar 

  7. Fénelon V.S. and Herbison A.E. (1996) Plasticity in GABAA receptor subunit mRNA expression by hypothalamic magnocellular neurons in the adult rat. J Neurosci 16, 4872–4880.

    PubMed  Google Scholar 

  8. Ginsberg S.D., Price D.L., Blackstone C.D., Huganir R.L. and Martin L.J. (1995) The AMPA glutamate receptor GluR3 is enriched in oxytocinergic magnocellular neurons and is localized at synapses. Neuroscience 65, 563–575.

    Article  PubMed  CAS  Google Scholar 

  9. Gribkoff V.K. (1991) Electrophysiological Evidence for N-Methyl-D-Aspartate Excitatory Amino Acid Receptors in the Rat Supraoptic Nucleus In Vitro. Neuroscience 131, 260–262.

    CAS  Google Scholar 

  10. Hayward J.N. (1977) Functional and morphological aspects of hypothalamic neurons. Physiol.Rev. 57, 574–658.

    PubMed  CAS  Google Scholar 

  11. Hu B. and Bourque C.W. (1991) Functional N-methyl-D-aspartate receptors are expressed by rat supraoptic neurosecretory cells in vitro, J Neuroendocrinol 3, 509–514.

    Article  PubMed  CAS  Google Scholar 

  12. Hussy N., Boissin-Agasse L., Richard P. and Desarménien M.G. (1997) NMDA receptor properties in rat supraoptic magnocellular neurons: Characterization and postnatal development. Eur J Neurosci 9, 1439–1449.

    Article  PubMed  CAS  Google Scholar 

  13. Kabashima N., Shibuya I., Ibrahim N., Ueta Y. and Yamashita H. (1997) Inhibition of spontaneous EPSCs and IPSCs by presynaptic GABAB receptors on rat supraoptic magnocellular neurons. J Physiol 504, 113–126.

    Article  PubMed  CAS  Google Scholar 

  14. Kombian S.B., Zidichouski J.A. and Pittman Q.J. (1996) GABAB receptors presynaptically modulate excitatory synaptic transmission in the rat supraoptic nucleus in vitro. J Neurophysiol 76, 1166–1179.

    PubMed  CAS  Google Scholar 

  15. Kus L., Handa R.J., Sanderson J.J., Kerr J.E. and Beitz A.J. (1995) Distribution of NMDAR1 receptor subunit mRNA and [125I]MK-801 binding in the hypothalamus of intact, castrate and castrate-DHTP treated male rats. Mol Brain Res 28, 55–60.

    Article  PubMed  CAS  Google Scholar 

  16. Manabe T., Wyllie D.J., Perkel D.J. and Nicoll R.A. (1993) Modulation of synaptic transmission and longterm potentiation: effects on paired pulse facilitation and EPSC variance in the CA 1 region of the hippo-campus. J Neurophysiol 70, 1451–1459.

    PubMed  CAS  Google Scholar 

  17. Meeker R.B., Greenwood R.S. and Hayward J.N. (1994) Glutamate Receptors in the Rat Hypothalamus and Pituitary. Endocrinology 134, No. 2, 621–629.

    Article  PubMed  CAS  Google Scholar 

  18. Meeker R.B., Swanson D.J., Greenwood R.S. and Hayward J.N. (1991) Ultrastructural distribution of glutamate immunoreactivity within neurosecretory endings and pituicytes of the rat neurohypophysis. Brain Res 564, 181–193.

    Article  PubMed  CAS  Google Scholar 

  19. Meeker R.B., Swanson D.J., Greenwood R.S. and Hayward J.N. (1993) Quantitative mapping of glutamate presynaptic terminals in the supraoptic nucleus and surrounding hypothalamus. Brain Res 600, 112–122.

    Article  PubMed  CAS  Google Scholar 

  20. Meeker R.B., Swanson D.J. and Hayward J.N. (1989) Light and electron microscopic localization of glutamate immunoreactivity in the supraoptic nucleus of the rat hypothalamus. Neuroscience 33, 157–167.

    Article  PubMed  CAS  Google Scholar 

  21. Misgeld U., Bijak M. and Jarolimek W. (1995) A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system. Prog Neurobiol 46, 423–462.

    Article  PubMed  CAS  Google Scholar 

  22. Mouginot D, Kombian SB, Pittman QJ. (1998) Activation of presynaptic GABAB receptors inhibits evoked IPSCs in rat magnocellular neurons in vitro. J. Neurophysiology [In Press]

    Google Scholar 

  23. Nissen R., Hu B. and Renaud L.P. (1995) Regulation of spontaneous phasic firing of rat supraoptic vasopressin neurones in vivo by glutamate receptors. J Physiol (Lond) 484, 415–424.

    CAS  Google Scholar 

  24. Oliet S.H.R. and Bourque C.W. (1993) Mechanosensitive Channels Transduce Osmosensitivity in Supraoptic Neurons. Nature 364, 341–343.

    Article  PubMed  CAS  Google Scholar 

  25. Poulain D.A. and Wakerley J.B. (1982) Electrophysiology of Hypothalamic Magnocellular Neurones Secreting Oxytocin and Vasopressin. Neuroscience 7(4), 773–808.

    Article  PubMed  CAS  Google Scholar 

  26. Rae J., Cooper K., Gates G. and Watsky M. (1991) Low resistance perforated patch recordings using amphotericin B. J Neurosci Methods 37, 15–26.

    Article  PubMed  CAS  Google Scholar 

  27. Randle J.C., Bourque C.W. and Renaud L.P. (1986) Characterization of spontaneous and evoked postsynaptic potentials in rat supraoptic neurosecretory neurons in vitro. J Neurophysiol 56, 1703–1718.

    PubMed  CAS  Google Scholar 

  28. Renaud L.P. and Bourque C.W. (1991) Neurophysiology and Neuropharmacology of Hypothalamic Magnocellular Neurons Secreting Vasopressin and Oxytocin. Progress in Neurobiology 36, 131–169.

    Article  PubMed  CAS  Google Scholar 

  29. Renaud LP, Pittman QJ, Blume HW. (1979) Neurophysiology of peptide neurons. obel Symposium 42: Central Regulation of the Endocrine System. Fuxe K, Hokfelt T, and Luft R.Plenum, p. 119–36.

    Google Scholar 

  30. Swanson L.W. and Kuypers H.G.J.M. (1980) The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organisation of projections to the pituitary, dorsal vagal complex and spinal cord as demonstrated by retrograde fluorescence double-labelling methods. J Comp Neurol 194, 555–570.

    Article  PubMed  CAS  Google Scholar 

  31. Tasker J.G. and Dudek F.E. (1991) Electrophysiological Properties of Neurones in the Region of the Para-ventricular Nucleus in Slices of Rat Hypothalamus..Journal of Physiology 434, 271–293.

    PubMed  CAS  Google Scholar 

  32. Theodosis DT. (1988) Synaptic inputs to oxytocin-and vasopressin-secreting neurons: multiple immunostaining for light and electron microscopy.Recent Progress in Posterior Pituitary Hormones. Yoshida S and Share L.Amsterdam: Elsevier, p. 33–42.

    Google Scholar 

  33. Tribollet E., Armstrong W.E., Dubois-Dauphin M. and Dreifuss J.J. (1985) Extrahypothalamic afferent inputs to the supraoptic nucleus area of the rat as determined by retrograde and anterograde tracing techinques. Neuroscience 15, 135–138.

    Article  PubMed  CAS  Google Scholar 

  34. Van den Pol A.N. and Trombley P.Q. (1993) Glutamate neurons in the hypothalamus regulate excitatory transmission. J Neuroscience 13, 2829–2836.

    Google Scholar 

  35. Voisin D.L., Herbison A.E., Chapman C. and Poulain D.A. (1996) Effects of central GABAB receptor modulation upon the milk ejection reflex in the rat. Neuroendocrinology 63, 368–376.

    Article  PubMed  CAS  Google Scholar 

  36. Wuarin J.-P. and Dudek F.E. (1993) Patch-clamp analysis of spontaneous synaptic currents in supraoptic neuroendocrine cells of the rat hypothalamus. J Neurosci 13, 2323–2331.

    PubMed  CAS  Google Scholar 

  37. Yang Q.Z., Smithson K.G. and Hatton G.I. (1995) NMDA and non-NMDA receptors on rat supraoptic nucleus neurons activated monosynaptically by olfactory afferents. Brain Res 680, 207–216.

    Article  PubMed  CAS  Google Scholar 

  38. Zucker R.S. (1989) Short-term plasticity. Annu Rev Neurosci 12, 13–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pittman, Q.J., Mouginot, D., Kombian, S.B. (1998). GABAB Receptors and Supraoptic Neuronal Activity. In: Zingg, H.H., Bourque, C.W., Bichet, D.G. (eds) Vasopressin and Oxytocin. Advances in Experimental Medicine and Biology, vol 449. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4871-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4871-3_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7210-3

  • Online ISBN: 978-1-4615-4871-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics