Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 469))

Abstract

Dithiolethiones and other cancer chemopreventive agents inhibit the production of experimentally produced tumors by elevating the expression of several genes that encode for known cytoprotective enzymes1. Complementary DNA clones representing dithiolethione-inducible gene-1 (DIG-1*) were isolated from rat liver via differential hybridization screening2. The deduced amino acid sequence of DIG-1 was found to have 80% identity with the human liver enzyme leukotriene B4 (LTB4)-12-hydroxydehydrogenase (LTB4 DH)3,4. DIG-1, purified >400-fold from the liver of rats dosed with l,2-dithiole-3-dithiolethione (D3T), possessed an NADP+-dependent activity to convert LTB4 to 12-oxo-LTB4 similar to LTB4DH 3. The formation of 12-oxo- LTB4 by LTB4 DH is the first step in the catabolism of LTB4 4,5. Subsequent conversion of 12-oxo- LTB4 to 10,11-dihydro-12-oxo- LTB4 (Met I) and 10,11,14,15-tetrahyro- 12-oxo- LTB4 (Met II) by as yet unidentified reductases has been described in liver and kidney cytosolic preparations as shown in Fig. 16. These metabolic products of LTB4 have diminished pro-inflammatory capacities, such as enhancing the mobilization of intracellular calcium, putatively via antagonism of the LTB4 receptor7. Suppression of the pro-inflammatory actions of LTB4, such as stimulation of neutrophil chemotaxis and Superoxide anion generation, suggests that the catabolism of LTB4 is a cytoprotective process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BNF:

β-naphthoflavone

D3T:

l,2-dithiole-3-thione

DIG-1:

dithiolethione-inducible gene-1

DS:

disulfiram

EQ:

ethoxyquin

13-HODE:

13(S)-hydroxyoctadeco—9Z,13E-dienoic acid

I3C:

indole-3-carbinol

LTB4 :

leukotriene B4

LTB4DH:

leukotriene B4 12-hydroxydehydrogenase

OLT:

oltipraz [5-(2-pyrazinyl)-4-methyl-l,2-dithiole-3-thione]

tBHQ:

tert-butylhydroquinone

References

  1. Primia T. Sutter T.R. and Kensler T.W. Antioxidant-inducible genes Adv. Pharmacol. 38 293–328 1997

    Article  PubMed  CAS  Google Scholar 

  2. Primiano, T., Gastel, J.A., Kensler, T.W., and Sutter, T.R. Isolation of cDNAs representing dithiolethione-responsive genes, Carcinogenesis 17, 2297–2303 (1996).

    Article  PubMed  CAS  Google Scholar 

  3. Primiano, T., Li, Y., Kensler, T.W., Trush, M.A., and Sutter, T.R. Identification of dithiolethione-inducible gene-1 as leukotriene B4 12-hydroxydehydrogenase: Implications for chemoprevention, Carcinogenesis, in press.

    Google Scholar 

  4. Yokomizo, T., Izumi, T., Takahashi, T., Kasama, T., Kobayashi, Y., Sato, F., Taketani, Y., and Shimizu, T. Enzymatic inactivation of leukotriene B4 by a novel enzyme found in porcine kidney, J. Biol. Chem. 268, 18128–18135 (1993).

    PubMed  CAS  Google Scholar 

  5. Wainwright S.L. and Powell W.S. Mechanism of the formation of dihydro metabolites of 12-hydroxyeicosaids J. Biol Chem. 266 20899–20906 1991

    PubMed  CAS  Google Scholar 

  6. Powell, W.S., and Gravelle, F. Metabolism of leukotriene B4 to dihydro and dihydro-oxo products by porcine leukocytes, J. Biol. Chem. 263, 2170–2177 (1989).

    Google Scholar 

  7. Yokomizo, T., Izumi, T., Chang, K., Takuwa, Y., and Shimizu, T. A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis, Nature 387, 620–624 (1997).

    Article  PubMed  CAS  Google Scholar 

  8. Primiano, T., and Novak, R.F. Enhanced expression, purification, and characterization of a novel class alpha glutathione S-transferase isozyme appearing in rabbit hepatic cytosol following treatment with 4-picoline, Toxicol. Appl. Pharmacol. 112, 291–299 (1992).

    Article  PubMed  CAS  Google Scholar 

  9. Kensler, T.W., Groopman, J.D., Roebuck, B.D., and Curphey, T.J. In Huang, M-T. Osawa, T., Ho, C-T., and Rosen, R.T. (eds.) Food Phytochemicals for CancerPrevention I: Fruits and Vegetables. American Chemical Society, Washington D.C., pp. 154–163 (1994).

    Google Scholar 

  10. Demopoulos H. Pietronigro D.D. Seligman M.L. The development of secondary pathology with free radical reactions as a threshold mechanism J. Amer. Coll. Toxicol 2 173–184 1994

    Article  Google Scholar 

  11. Ekbom, A., Helmick, C., Zack, M., and Adami, H-O. Ulcerative colitis and colorectal cancer: a population-based study, N. Engl. J. Med 323, 1228–1233 (1990).

    Article  PubMed  CAS  Google Scholar 

  12. Parsonnet J. Friedman G.D. Vandersteen D.P. Helicobacter pylori infection and the risk of gastric carcima N. Engl. J. Med 325 1127–1131 1991

    Article  PubMed  CAS  Google Scholar 

  13. Hagen, T.M., Huang, S., Curnutte, J., Fowler, P., Martinez, V., Wehr, C.M., Ames, B.N., Chisari, F.V. Extensive oxidative DNA damage in hepatocyres of transgenic mice with chronic active hepatitis destined to develop hepatocellular carcinoma, Proc. Natl. Acad. Sci. USA 91, 12808–12812 (1994).

    Article  PubMed  CAS  Google Scholar 

  14. Sharon, P., and Stenson, W.F. Enhanced synthesis of leukotirene B4 by colonic mucosa in inflammatory bowel disease, Gastroenterology 86, 453–460 (1984).

    PubMed  CAS  Google Scholar 

  15. Li, Y., Ferrante, A., Poulos, A., and Harvey, D.P. Neutrophil oxygen radical generation: synergistic responses to tumor necrosis factor and mono/polyunsaturated fatty acids, J. Clin. Invest. 97, 1605–1609 (1996).

    Article  PubMed  CAS  Google Scholar 

  16. Cerutti P.A. Prooxidant states and tumor promotion. Science 227 375–381 1985

    Article  PubMed  CAS  Google Scholar 

  17. Trush, M.A., and Kensler, T.W. An overview of the relationship between oxidative stress and chemical carcinogenesis. Free Radical Biol. Med. 10, 201–209 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Primiano, T., Kensler, T.W., Trush, M.A., Sutter, T.R. (1999). Induction of Leukotriene B4 Metabolism by Cancer Chemopreventive Agents. In: Honn, K.V., Marnett, L.J., Nigam, S., Dennis, E.A. (eds) Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation, and Radiation Injury, 4. Advances in Experimental Medicine and Biology, vol 469. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4793-8_87

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4793-8_87

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7171-7

  • Online ISBN: 978-1-4615-4793-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics